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Preface

Introduction to Systems Biology is intended to be an introductory text 
for undergraduate and graduate students who are interested in com-
prehensive biological systems. Because genomics, transcriptomics, pro-
teomics, interactomics, metabolomics, phenomics, localizomics, and other 
omics analyses provide enormous amounts of biological data, systematic 
instruction on how to use computational methods to explain underlying 
biological meanings is required to understand the complex biological 
mechanisms and to build strategies for their application to biological 
problems.

The book begins with an introductory section on systems biology. The 
experimental omics tools are briefly described in Part II. Parts III and 
IV introduce the reader to challenging computational approaches that 
aid in understanding biological dynamic systems. These last two parts 
provide ideas for theoretical and modeling optimization in systemic bio-
logical researches by presenting most algorithms as implementations, 
including the up-to-date, full range of bioinformatic programs, as well as 
illustrating available successful applications.

The authors also intend to provide a broad overview of the field using 
key examples and typical approaches to experimental design (both wet-
lab and computational). The format of this book makes it a great resource 
book and provides a glimpse of the state-of-the-art technologies in 
systems biology. I hope that this book presents a clear and intuitive 
illustration of the topics on biological systemic approaches and further 
introduces ideal computational methods for the reader’s own research.

Sangdun Choi
Department of Biological Sciences, 

Ajou University, Suwon, Korea
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1
Scientific Challenges in 

Systems Biology
Hiroaki Kitano

Summary

Systems biology is the study of biological systems at the system level. 
Such studies are made possible by progress in molecular biology, genom-
ics, computer science, and other fields that deal with the complexity of 
systems. For systems biology to grow into a mature scientific discipline, 
there must be basic principles or conceptual frameworks that drive sci-
entific inquiry. The author argues that understanding the robustness of 
biological systems and the principles behind such phenomena is critically 
important for establishing the theoretical foundation of systems biology. 
It may be a guiding principle not only for basic scientific research but 
also for clinical studies and drug discovery. A series of technologies and 
methods need to be developed to support investigation of such theory-
driven and experimentally verifiable research.

Key Words: Systems biology; robustness; trade-offs; technology platforms.

1. Introduction

Systems biology aims at a system-level understanding of biological 
systems (1,2). The investigation of biological systems at the system 
level is not a new concept. It can be traced back to homeostasis by 
Canon (3), cybernetics by Norbert Weiner (4), and general systems 
theory by von Bertalanffy (5). Also, several approaches in physiology 
have taken a systemic view of the biological subjects. The reason why 
“systems biology” is gaining renewed interest today is, in my view, 
due to emerging opportunities to solidly connect system-level under-
standing to molecular-level understanding, as well as the possibility of 
establishing well-founded theory at the system level. This is only possible 
today because of the progress of molecular biology, genomics, computer 
science, modern control theory, nonlinear dynamics theory, and other 
relevant fields, which had not sufficiently matured at the time of early 
attempts.

3
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4 Kitano

However, “system-level understanding” is a rather vague notion and 
is often hard to define. This is because a system is not a tangible object. 
Genes and proteins are more tangible because they are identifiable
matter. Although systems are composed of this matter, the system itself 
cannot be made tangible. Often, a diagram of the gene regulatory net-
works and protein interaction networks are shown as a representation 
of systems. It is certainly true that such diagrams capture one aspect of 
the structure of the system, but they are still only a static slice of the 
system. The heart of the system lies in the dynamics it creates and the 
logic behind it. It is science on the dynamic state of affairs.

There are four distinct phases that lead us to system-level understand-
ing at various levels. First, system structure identification enables us to 
understand the structure of the systems. Although this may be a static 
view of the system, it is an essential first step. Structure is ultimately 
identified in both physical and interaction structures. Interaction struc-
tures are represented as gene regulatory networks and biochemical net-
works that identify how components interact within and between cells. 
Physical details of a specific region of the cell, overall structure of cells, 
and organisms are also important because such physical structures 
impose constraints on possible interactions, and the outcome of inter-
actions impacts the formation of physical structures. The nature of an 
interaction could be different if the proteins involved move by simple 
diffusion or under specific guidance from the cytoskeleton.

Second, system dynamics need to be understood. Understanding the 
dynamics of the system is an essential aspect of study in systems biology. 
This requires integrative efforts of experiments, measurement of tech-
nology development, computational model development, and theoretical 
analysis. Several methods, such as bifurcation analysis, have been used, 
but further investigations are necessary to handle the dynamics of systems 
with very high dimensional space.

Third, methods to control the system have to be investigated. One of 
the implications is to find a therapeutic approach based on system-level 
understanding. Many drugs have been developed through extensive 
effect-oriented screening. It is only recently that a specific molecular 
target has been identified, and leading compounds are designed accord-
ingly. Success in control methods of cellular dynamics may enable us to 
exploit intrinsic dynamics of the cell, so that its effects can be precisely 
predicted and controlled.

Finally, designing the system—i.e., modifying and constructing 
biological systems with designed features. Bacteria and yeast may be 
redesigned to yield the desired properties for drug production and 
alcohol production. Artificially created gene regulatory logic could be 
introduced and linked to innate genetic circuits to attain the desired 
functions (6).

Several different approaches can be taken within the systems biology 
field. One may decide to carry out large-scale, high-throughput experi-
ments and try to find the overall picture of the system at coarse-grain 
resolution (7–10). Alternatively, working on precise details of specific
signal transduction (11,12), the cell cycle (13,14), and other biological 
issues to find out the logic behind them are also viable research 
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Scientific Challenges in Systems Biology 5

approaches. Both approaches are essentially complementary, and 
together reshape our understanding of biological systems.

2. Robustness as a Fundamental Organizational Principle

Although systems biology is often characterized by the use of massive 
data and computational resources, there are significant theoretical ele-
ments that need to be addressed. After all, efforts to digest large data 
sets are designed to deepen understanding of biological systems, as well 
as to be applied for medical practices and other issues. In either case, 
there must be hypotheses to test using these data and computational 
practices.

Stunning diversity and robustness of biological systems are the most 
intriguing features of living systems, and can be observed across an 
astonishingly broad range of species. Robustness is the fundamental 
feature that enables diverse species to generate and evolve. It is ubiqui-
tous, as it can be observed in virtually all species across different aspects 
of biological systems. Therefore, one of the central themes of systems 
biology is to understand robustness and its trade-offs in biological systems 
and the principle behind them (15).

Why is robustness so important? First, it is a feature that is observed 
to be ubiquitous in biological systems, from such a fundamental 
process as phage fate-decision switch (16) and bacterial chemotaxis 
(17–19) to developmental plasticity (20) and tumor resistance against 
therapies (21,22), which implies that it may be a basis of principles that 
are universal in biological systems. These principles may lead to oppor-
tunities for finding cures for cancer and other complicated diseases. 
Second, robustness and evolvability are tightly coupled. Robustness 
against environmental and genetic perturbation is essential for evolv-
ability (23–25), underlying a basis of evolution. Evolution tends to select 
individuals with more robust traits against environmental and genetic 
perturbations than less robust individuals. Third, robustness is a distinc-
tively system-level property that cannot be observed by just looking at 
its components. Fourth, diseases may be manifestations of trade-offs 
between robustness and fragility that are inevitable in evolvable robust 
systems. Therefore, an in-depth understanding of robustness trade-offs 
is expected to provide us with insights for better preventions and coun-
termeasures for diseases such as cancer, diabetes, and immunological 
disorders.

Robustness is a property of the system that maintains a specific func-
tion against certain perturbations. A specific aspect of the system, func-
tion to be maintained, and type of perturbation that the system is robust 
against must be well defined to make solid arguments. For example, 
modern airplanes (system) have a function to maintain its flight path 
(function) against atmospheric perturbations (perturbations). Across 
engineering and biological systems, there are common mechanisms that 
make systems robust against various perturbations.

First, extensive system control is used (most obviously negative feed-
back loops) to make the system dynamically stable around the specific
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6 Kitano

site of the system. An integral feedback used in bacterial chemotaxis is 
a typical example (17–19). Because of integral feedback, bacteria can 
sense changes in chemoattractant and chemorepellent activity indepen-
dent of absolute concentration, so that proper chemotaxis behavior 
is maintained over a wide range of ligand concentration. In addition, 
the same mechanism makes it insensitive to changes in rate constants 
involved in the circuit. Positive feedbacks are often used to create 
bistability in signal transduction and cell cycles, so that the system is 
tolerant against minor perturbation in stimuli and rate constants 
(11,13,14).

Second, alternative (or fail-safe) mechanisms increase tolerance 
against component failure and environmental changes by providing 
alternative components or methods to ultimately maintain a function of 
the system. Occasionally, there are multiple components that are similar 
to each other that are redundant. In other cases, different means are used 
to cope with perturbations that cannot be handled by the other means. 
This is often called phenotypic plasticity (26,27) or diversity. Redundancy 
and phenotypic plasticity are often considered as opposite events, but it 
is more consistent to view them as different ways to meet an alternative 
fail-safe mechanism.

Third, modularity provides isolation of perturbation from the rest of 
the system. The cell is the most significant example. Less obvious exam-
ples are modules of biochemical and gene regulatory networks. Modules 
also play important roles during developmental processes by buffering 
perturbations so that proper pattern formation can be accomplished 
(20,28,29). The definition of a module, and how to detect such modules, 
are still controversial, but the general consensus is that modules do exist 
and play an important role (30).

Fourth, decoupling isolates low-level noise and fluctuations from func-
tional level structures and dynamics. One example is genetic buffering 
by Hsp90, in which misfolding of proteins caused by environmental 
stresses is fixed; thus, effects of such perturbations are isolated from 
functions of circuits. This mechanism also applies to the genetic varia-
tions, where genetic changes in a coding region that may affect protein 
structures are masked because protein folding is fixed by Hsp90, unless 
such masking is removed by extreme stress (24,31,32). Emergent behav-
iors of complex networks also exhibit such buffering properties (33). 
These effects may constitute the canalization proposed by Waddington 
(34).

Apart from these basic mechanisms, there is a global architecture of 
networks that is characteristic of evolvable robust systems. The bow-tie 
network is an architecture that has diverse and overlapping inputs and 
output cascades connected by a “core” network (15,35). Such a structure 
is observed in metabolic pathways (36) and signal transductions (37,38), 
and can be considered to play an important role.

In addition, there is an interesting tendency in living organisms to 
enhance robustness through acquisition of “nonself” biologic entities 
into “self,” namely, self-extending symbiosis, such as horizontal gene 
transfer, serial endosymbiosis, oocyte-mediated vertical transfer of sym-
bionts, and bacterial flora (39).
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3. Intrinsic Nature of Robust Systems

Robustness is a basis of evolvability. For the system to be evolvable, it 
must be able to produce a variety of nonlethal phenotypes (40). At the 
same time, genetic variations need to be accumulated as neutral net-
works, so that pools of genetic variants are exposed when the environ-
ment changes suddenly. Systems that are robust against environmental 
perturbations entail mechanisms such as system control, alternative 
modularity, and decoupling, which also support, by congruence, the gen-
eration of a nonlethal phenotype and genetic buffering. In addition, the 
capability to generate flexible phenotype and robustness requires emer-
gence of bow-tie structures as an architectural motif (35). One of the 
reasons why robustness in biological systems is so ubiquitous is because 
it facilitates evolution, and evolution tends to select traits that are robust 
against environmental perturbations. This leads to successive addition of 
system controls.

Given the importance of robustness in biological systems, it is impor-
tant to understand the intrinsic properties of such systems. One such 
property is the intrinsic trade-offs among robustness, fragility, perfor-
mance, and resource demands. Carlson and Doyle argued, using simple 
examples from physics and forest fires, that systems that are optimized 
for specific perturbations are extremely fragile against unexpected 
perturbations (41,42). This means when robustness is enhanced against 
a range of perturbations, then it must be countered by fragility elsewhere, 
compromised performance, and increased resource demands. Highly 
optimized tolerance model systems are successively optimized/designed 
(although not necessarily globally optimized) against perturbations, in 
contrast to self-organized criticality (43) or scale-free networks (44), 
which are unconstrained stochastic additions of components without 
design or optimizations involved. Such differences actually affect failure 
patterns of the systems, and thus have direct implications for understand-
ing of the nature of disease and therapy design.

Disease often reflects an exposed fragility of the system. Some diseases 
are maintained to be robust against therapies because such states are 
maintained or even promoted through mechanisms that support robust-
ness of normal physiology of our body.

Diabetes mellitus is an excellent example of how systems that are 
optimized for near-starving, intermittent food supply, high-energy utiliza-
tion lifestyle, and highly infectious conditions are exposed to fragility 
against unusual perturbations, in evolutionary time scale (i.e., high energy 
content foods, and low energy utilization lifestyle) (45). Because of opti-
mization to near-starving condition, extensive control to maintain 
minimum blood glucose level has been acquired so that activities of 
central neural systems and innate immunity are maintained. However, 
no effective regulatory loop has been developed against excessive energy 
intake, so that blood glucose level is chronically maintained higher than 
the desired level, leading to cardiovascular complications.

Cancer is a typical example of robustness hijacking (21,22). Tumor is 
robust against a range of therapies because of genetic diversity, feedback 
loop for multidrug resistance, and tumor–host interactions. Tumor–host 
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interactions, for example, are involved in HIF-1 up-regulation that then 
up-regulates VEGF, uPAR, and other genes that trigger angiogenesis and 
cell motility (46). HIF-1 up-regulation takes place because of hypoxia in 
tumor clusters and dysfunctional blood vessels caused by tumor growth. 
This feedback regulation enables tumor to grow further or cause metas-
tasis. However, HIF-1 up-regulation is important for normal physiology 
under oxygen-deprived conditions, such as breathing at high altitudes 
and lung dysfunctions (47). This indicates that mechanisms that provide 
protection for our body are effectively hijacked.

Mechanisms behind infectious diseases, autoimmune disorders, 
and immune deficiencies, and why certain countermeasures work and 
others do not, can be properly explained from the robustness per-
spective (48).

I would consider three theoretically motivated countermeasures for 
such diseases. First, robustness of epidemic state should be controlled by 
systematically perturbing biochemical and gene regulatory circuits using 
low-dose drugs. Second, robust epidemic state implies that there is a 
point of fragility somewhere. Identification or active induction of such 
a point may lead to novel therapeutic approaches with dramatic effects. 
Third, one may wish to retake control of feedback loops that give rise to 
robustness in the epidemic state. One possible approach is to introduce 
a decoy that effectively disrupts feedback control or invasive mecha-
nisms of the epidemic.

How we can systematically identify such strategic therapy is yet 
unknown, and will be a subject of major research in the future (49). 
However, it is important to emphasize that a conceptual foundation to 
view robustness as a fundamental principle of biological systems is the 
critical aspect of this research program. Without such perspective, the 
search for cures is, at best, a random process.

4. Technology Platforms in Systems Biology

For theoretical analysis to be effective, it is essential that a range of tools 
and resources are made available. One of the issues is to create a stan-
dard for representing models. Systems Biology Mark-up Language 
(SBML; http://www.sbml.org/) was designed to enable standardized rep-
resentation and exchange of models among software tools that comply 
with SBML standards (50). The project was started in 1999, and has now 
grown into a major community effort. SBML Level-1 and Level-2 have 
been released and used by over 110 software packages (as of March 
2007). Systems Biology Workbench is an attempt to provide a framework 
where different software modules can be seamlessly integrated, so that 
researchers can create their own software environment (51). A recent 
addition to such standardization efforts is Systems Biology Graphical 
Notation (http://www.sbgn.org/), which aims at the formation of standard 
and solidly defined visual representations of molecular interaction 
networks.

In addition to standard formation efforts, technologies to properly 
measure and compute cellular dynamics are essential. One of the major 
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interests in computational aspects of systems biology is how numerical 
simulations can be used for deeper understanding of organisms and 
medical applications. There is no doubt that simulation, if properly used, 
can be a powerful tool for scientific and engineering research. Modern 
aircraft cannot be developed without the help of computational fluid
dynamics (CFD). There are at least two issues that shall be carefully 
examined in computational simulation. First, the purpose of simulation 
has to be well defined, and the model has to be constructed to maximize 
the purpose of the simulation. This affects the choice of modeling tech-
nique, levels of abstractions, scope of modeling, and parameters to be 
varied. Second, simulation needs to be well placed in the context of the 
entire analysis procedure. In most cases, simulation is not the only 
method of analysis, so that the part of analysis that uses numerical simu-
lation and the other parts that use nonsimulation methods will be well 
coordinated to maximize overall analysis activity.

An example from racing car design illustrates these issues. CFD is 
extensively used in Formula 1 car design to obtain optimal aerodynamics, 
i.e., higher down-force and lower drag. Particular interests are placed on 
the effects of various aerodynamic components, such as front wings, rear 
wings, and ground effects, but complicated interference between front 
wings, suspension members, wheels, and brake air-intake ducts is also 
investigated. Combustion in the engine is the other issue where simula-
tion studies are often used, but it is simulated separately from the CFD 
model. The success of CFD relies upon the fact that basic principles of 
fluid dynamics are relatively well understood, although there are still 
issues that remain to be resolved, so that simulation can be done with 
relative confidence. This exemplifies practice of proper focus and abstrac-
tion. When receptor dynamics is being investigated, transcription machin-
ery will not be modeled, as it is only remotely related.

CFD is not the only tool for aerodynamic design. Formula 1 racing 
cars are initially designed using CFD (in silico), then further investigated 
using a wind tunnel (in physico), followed by an actual run at the test 
course (in vitro) before being deployed in actual races (in vivo). CFD, 
in this case, is used for initial search of candidate designs that are subject 
to further investigation using a wind tunnel.

There are three major reasons why CFD is now widely accepted. First, 
the Navier–Stokes equation has been well established to provide com-
putational basis for fluid dynamics with reasonable accuracy. Although 
there are unresolved issues on how to accurately compute tabular flows,
the Navier–Stokes equation provides an acceptable, practical solution 
for most needs. Second, many CFD results are compared and calibrated 
against wind tunnel experiments that are highly controlled and exten-
sively monitored. Because of the existence of the wind tunnel, CFD 
models can be improved for their accuracy and reliability of predictions. 
Third, decades of effort have been spent on improving CFD and related 
fluid dynamics research. The current status of CFD is a result of decades 
of effort.

For computer simulation and analysis in biology to parallel the success 
of CFD, it must establish a fundamental computing paradigm compara-
ble to the Navier–Stokes equation, create the equivalent to a wind tunnel 
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in biological experiments, and keep working on the problems for decades. 
Of course, biological systems are much more heterogeneous and complex 
than fluids, but a set of basic equations must be established so that the 
fundamental principles behind the computing are pointing in the right 
direction. It is essential that not only interaction networks but also physi-
cal structures be modeled together so that they provide improved reality, 
particularly for high-resolution modeling of complex mammalian cells. 
Such an approach may be called computational cellular dynamics (52). 
Second, highly controlled and high-precision experimental systems are 
essential; these will be “wind-tunnels” in biology. Microfluidics and other 
emerging technologies may provide us with experimental setups that 
have remarkably high precision (53).

One caution that has to be made on the use of computational modeling 
in biology is to make clear scientific questions that have to be answered 
by using the computational approach. Mere attempts to create compu-
tational models that behave like actual cells do not constitute good sci-
entific practice. Simulation and modeling is the abstraction of actual 
phenomena. Without proper scientific questions, the correct level of 
abstraction and scope of the model to be created cannot be determined. 
This is also the case in CFD. CFD in racing car design has a clear and 
explicit optimization goal, which is high down-force and low drag. The 
problem for simulation in biology is that what needs to be discovered by 
the simulation is not as straightforward as racing car design. Here, the 
importance of a guiding principle, such as robustness, shall be remem-
bered. The guiding principle provides a view of what needs to be inves-
tigated and identified, which can be the starting point of a broad range 
of applications. One goal of computational simulation is to understand 
the nature and degree of robustness, and to find out through a set of 
perturbations how such robustness can be compromised in a controlled 
manner.

In summary, emphasis shall be placed on the importance of research 
to identify fundamental system-level principles of biological systems, 
where numerous insights in both basic science and applications can come 
out. There are emerging opportunities now because of massive data that 
are being generated in large-scale experimental projects, but such data 
are best utilized when processed with certain hypotheses behind them 
that capture essential aspects of system-level properties. Robustness is 
one principle that is ubiquitous and fundamental. Investigation on 
robustness of biological systems will provides us with guiding principles 
for understanding biological systems and diseases, as well as the effective 
use of computational tools.
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Bringing Genomes to Life: The Use of 
Genome-Scale In Silico Models
Ines Thiele and Bernhard Ø. Palsson

Summary

Metabolic network reconstruction has become an established procedure 
that allows the integration of different data types and provides a frame-
work to analyze and map high-throughput data, such as gene expression, 
metabolomics, and fluxomics data. In this chapter, we discuss how to 
reconstruct a metabolic network starting from a genome annotation. 
Further experimental data, such as biochemical and physiological data, 
are incorporated into the reconstruction, leading to a comprehensive, 
accurate representation of the reconstructed organism, cell, or organelle. 
Furthermore, we introduce the philosophy of constraint-based modeling, 
which can be used to investigate network properties and metabolic capa-
bilities of the reconstructed system. Finally, we present two recent studies 
that combine in silico analysis of an Eschirichia coli metabolic recon-
struction with experimental data. While the first study leads to novel 
insight into E. coli’s metabolic and regulatory networks, the second pre-
sents a computational approach to metabolic engineering.

Key Words: Metabolism; reconstruction; constraint-based modeling; 
in silico model; systems biology.

1. Introduction

Over the past two decades, advances in molecular biology, DNA sequenc-
ing, and other high-throughput methods have dramatically increased 
the amount of information available for various model organisms. Sub-
sequently, there is a need for tools that enable the integration of this 
steadily increasing amount of data into comprehensive frameworks to 
generate new knowledge and formulate hypotheses about organisms and 
cells. Network reconstructions of biological systems provide such frame-
works by defining links between the network components in a bottom-
to-top approach. Various types of “omics” data can be used to identify 
the list of network components and their interactions. These network 
reconstructions represent biochemically, genetically, and genomically 
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(BIGG) structured databases that simultaneously integrate all com-
ponent data, and can be used to visualize and analyze further high-
throughput data, such as gene expression, metabolomics, and fluxomics
data.

There are at least three ways to represent BIGG databases: (i) 
textual representation, which allows querying of its content; (ii) graphi-
cal representation, which allows the visualization of the network interac-
tions and their components; and (iii) mathematical representation, 
which enables the usage of a growing number of analytical tools to 
characterize and study the network properties. Several metabolic 
reconstructions have been published recently, spanning all domains of 
life (Table 1), and most of them are publicly available.

In this chapter, we will first define the general properties of a biological 
system, and then learn to how to reconstruct metabolic networks. The 
second part of the chapter will introduce the philosophy of constraint-
based modeling and highlight two recent research efforts that combined 
experimental and computational methods. Although this chapter con-
centrates on metabolic reconstructions, networks of protein–protein 
interactions, protein–DNA interactions, gene regulation, and cell signal-
ing can be reconstructed using similar rules and techniques. The general 
scope of this chapter is illustrated in Figure 1, which represents the main 
process of “bringing genomes to life.”

Table 1. Organisms and network properties for which genome-scale 
metabolic reconstructions have been generated.

ORFs SKI NG NM NR Ref

BACTERIA
Bacillus subtilis 4,225 4.8 614 637 754 19
Escherichia coli 4,405 55.1 904 625 931 20

720 438 627 21
Geobacter sulfurreducens 3,530  588 541 523 22
Haemophilus infl uenzae 1,775 8.9 296 343 488 23

400 451 461 24
Helicobacter pylori 1,632 13 341 485 476 25

291 340 388 26
Lactococcus lactis 2,310  358 422 621 27
Mannheimia succiniproducens 2,463  335 352 373 28
Staphylococcus aureus 2,702 16 619 571 641 29
Streptomyces coelicolor 8,042 0.13 700 500 700 30

ARCHAEA
Methanosacrcina barkerii 5,072  692 558 619 31

EUKARYA
Mus musculus 28,287 15.6 1,156b 872 1,220 32
Saccharomyces cerevisiae 6,183 10.6 750 646 1,149 33

708 584 1,175 34
Listed is the number of open reading frames (ORF) of each organism, the number of 
genes included in the reconstruction (NG), as well as the number of metabolites (NM) and 
reactions (NR) in the metabolic network. The Species Knowledge Index (SKI) (1) is a 
measure of the amount of scientific literature available for an organism. Adapted from 
Reed (18).
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Figure 1. Bringing genomes to life. This figure illustrates the main outline of the 
chapter and the general approach to network reconstruction and analysis. Start-
ing from the genome sequence, an initial component list of the network is 
obtained. Using additional data such as biochemical and other omics data the 
initial component list is refined as well as information about the links between 
the network components. Once the network links, or reactions, are formulated, 
the stoichiometric matrix can be constructed using the stoichiometric coefficients
that link the network components. The definition of the system boundaries trans-
forms a network reconstruction into a model of a biological system. Every 
network reaction is elementary balanced and may obey further constraints (e.g., 
enzyme capacity). These constraints allow the identification of candidate network 
solutions, which lie within the set of constraints. Different mathematical tools 
can be used to study these allowable steady-state network states under various 
aspects such as optimal growth, byproduct secretion and others.

CIT_Ch02.indd 16CIT_Ch02.indd   16 5/22/2007 3:30:09 PM5/22/2007   3:30:09 PM



Bringing Genomes to Life: The Use of Genome-Scale In Silico Models 17

2. Properties of Biological Networks

In this section, we will discuss general properties of biological systems 
and how these can be used to define a general scheme that describes 
biological systems in the terms of the components and links of the 
network.

2.1. General Properties of Biological Systems

The philosophy of network reconstruction and constraint-based model-
ing is based on the fact that there are general principles any biological 
system has to obey. Because the interactions, or links, between network 
components are chemical transformations, they are based on principles 
derived from basic chemistry. First, in living systems, the prototypical 
transformation is bilinear at the molecular level. This association involves 
two compounds coming together to either be chemically transformed 
through i) the breakage or formation of covalent bonds, as is typical for 
metabolic reactions and reactions of the macromolecular synthesis,

X + Y ↔ X − Y covalent bonds

or ii) two molecules associate together to form a complex that may be 
held together by hydrogen bonds and/or other physical association forces 
to form a complex, which has a different functionality from the individual 
components:

X + Y ↔ X : Y association of molecules.

An example of the latter association is the binding of a transcription 
factor to DNA to form an activated transcription site that enables the 
binding of the RNA polymerase.

Second, the reaction stoichiometry is fixed and described by integer 
numbers counting the molecules that react and that are formed as 
a consequence of the chemical reaction. Chemical transformations are 
constrained by elemental and charge balancing, as well as other features. 
The stoichiometry is invariant between organisms for the same reactions, 
and it does not change with pressure, temperature, or other conditions. 
Therefore, stoichiometry gives the primary topological properties of 
a biochemical reaction network.

Third, all reactions inside a cell are governed by thermodynamics. 
The relative rate of reactions, forward and backward, is therefore 
fixed by basic thermodynamic properties. Unlike stoichiometry, thermo-
dynamic properties do change with physicochemical conditions, such 
as pressure and temperature. In addition, the thermodynamic properties 
of association between macromolecules can be changed, for example, by 
altering the sequence of a protein or the base-pair sequence of a DNA-
binding site.

Fourth, in contrast to stoichiometry and thermodynamics, the absolute 
rates of chemical reactions inside cells are evolutionarily malleable. Cells 
can thus extensively manipulate the rates of reactions through changes 
in their DNA sequence. Highly evolved enzymes are very specific in 
catalyzing particular chemical transformations.
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These rules dictate that cells cannot form new links at will, and candi-
date links are constrained by the nature of covalent bonds and by the 
thermodynamic nature of interacting macromolecular surfaces. All of 
these are subject to the basic rules of chemistry and thermodynamics. 
Furthermore, intracellular conditions restrict the activity of systems, such 
as physicochemical conditions, spatiotemporal organization of cellular 
components, and the quasicrystalline state of the cell.

2.2. Steady-State Networks

Biological systems exist in a steady state, rather than in equilibrium. In 
a steady-state system, flow into a node is equal to flow out of a node. 
Consequently, depletion or accumulation in a steady-state network is not 
allowed, which means that a produced compound has to be consumed 
by another reaction. If this is not the case, the corresponding compound 
represents a network gap (or dead end), and its producing reaction is 
called a blocked reaction because no flux through this reaction is 
possible.

3. Reconstruction of Metabolic Networks

The genome annotation, or 1D annotation, provides the most compre-
hensive list of components in a biological network. In metabolic network 
reconstructions, the genome annotation is used to identify all potential 
gene products involved in the metabolism of an organism. By using more 
types of information, such as biochemical, physiological, and phenotype 
data, the interaction of these components will be defined. Subsequently, 
we will refer to network reconstructions as 2D genome annotation 
because the network links defined in the network reconstruction repre-
sent a second dimension to the 1D genome annotation.

3.1. Sources of Information

1D genome annotations are one of the most important information 
sources for reconstructions because they provide the most comprehen-
sive list of network components. However, one has to keep in mind that 
without biochemical or physiological verification, the 1D annotation is 
merely a hypothesis.

The links in metabolic networks are the reactions carried out by meta-
bolic gene products. To assign cellular components with the metabolic 
reactions, different information is required and provided by various 
sources. Organism-specific and non–organism-specific databases contain 
a vast amount of data regarding gene function and associated metabolic 
activities. Especially valuable are organism-specific literature providing 
information on the physiological and pathogenic properties of the organ-
ism, along with biochemical characterization of enzymes, gene essential-
ity, minimal medium requirements, and favorable growth environments. 
Although biochemical data are used during the initial reconstruction 
effort to define metabolic reactions, organism-specific information such 
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as medium requirements and growth environment can be used to derive 
transport reactions when not provided by the 1D genome annotations. 
In addition, gene essentiality data can be used during the network evalu-
ation process to compare and validate the reconstruction. Physiological 
data, such as medium composition, secretion products, and growth per-
formance, are also needed for the evaluation of the reconstruction and 
can be found in primary literature or can be generated experimentally. 
Phylogenetic data can substitute organism-specific information when a 
particular organism is not well studied, but has a close relative that is. In 
addition, cellular localization of enzymes can be found in studies that use 
immunofluorescence or GFP-tagging for individual proteins to identify 
their place of action. Alternatively, there are several algorithms pre-
dicting a protein’s compartmentalization based on localization signal 
sequences.

Because some of these information sources are more reliable than 
others, a confidence scoring system may be used to distinguish them.

3.2. How to Choose an Organism to Reconstruct

The amount of information available differs significantly from organism 
to organism; therefore, the choice of organism to reconstruct is critical 
for the quality of the final reconstruction. Because the genome annota-
tion serves as a first parts list in most reconstruction efforts, its avail-
ability and high quality are primary criteria. Furthermore, the quantity 
of primary and review publications available for metabolism should be 
considered. A good estimate of legacy data available for an organism can 
be obtained with the Species Knowledge Index (SKI) (1). This SKI value 
is a measure of the amount of scientific literature available for an organ-
ism, calculated as the number of abstracts per species in PubMed 
(National Center for Biotechnology Information) divided by the number 
of genes in the genome (see Table 1 for some SKI values of reconstructed 
organisms). Finally, organism-specific databases maintained by experts 
can be very valuable sources of information during the reconstruction 
process.

3.3. Formulation of Model

The translation of a 1D genome annotation into a metabolic network 
reconstruction can be done in a step-wise fashion by incorporating dif-
ferent types of data. First, relevant metabolic genes have to be identified
from the 1D annotation. The gene functions have to be translated 
in elementary and charged balanced reactions. Next, the network is 
assembled by considering each metabolic pathway separately and by 
filling in missing reactions as necessary. When this first version of the 
network reconstruction is finished, the reconstruction will be tested 
in silico and compared with physiological data to ensure that it has the 
same metabolic capabilities as the cell in vivo. This latter step might 
identify further reactions that need to be included, whereas other ones 
will be replaced or their directionality might be changed. It is important 
to remember that the sequence-derived list of metabolic enzymes cannot 
be assumed to be complete because of the large numbers of open reading 
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frames (ORFs) still having unassigned functions. The iterative process of 
network reconstruction and evaluation will lead to further refinement of 
reconstruction (Figure 2).

3.3.1. Defi ning Biochemical Reactions
The biochemical reaction carried out by a gene product can be deter-
mined in five steps (Figure 3). First, the substrate specificity has to be 
determined because it can differ significantly between organisms. In 
general, one can distinguish between two groups of enzymes based on 
their substrate specificity. The first group of enzymes can only act on a 
few highly similar substrates, whereas the second group recognizes a 
class of compounds with similar functional groups; thus, the enzymes 
have a broader substrate specificity. The substrate specificity of either 
type of these enzymes may differ across organisms for primary metabo-
lites, as well as for coenzymes (such as NADH vs. NADPH and ATP vs. 
GTP). Often, it is very difficult to derive this information solely from the 
gene sequence because substrate- and coenzyme-binding sites might be 
similar for related compounds.
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Figure 2. The iterative process of network reconstruction. Normally, several 
iterations of reconstruction are necessary to ensure quality and accuracy of the 
reconstructed network. After an initial reconstruction, accounting for the main 
components identified by the different sources of information, is obtained, the 
reconstruction will be tested for its ability to produce certain metabolites such 
as biomass precursors. Comparison with experimental data, like phenotypical 
and physiological data, will help to identify any discrepancy between in silico and
in vivo properties. The iterative re-evaluation of legacy data and network proper-
ties will eventually lead to a refined reconstruction.
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Once the metabolites and coenzymes of an enzyme are identified, the 
charged molecular formula at a physiologically relevant pH has to be 
calculated, as a second step. In general, a pH of 7.2 is used in the recon-
struction. However, the pH in some organelles can differ from the rest 
of the cell, as is the case for peroxisomes, where the pH has been reported 
to be between 6 and 8 (2,3). The pKa value for a given compound can be 
used to determine its degree of protonation.

Third, the stoichiometry of the reaction needs to be specified. As in 
basic chemistry, reactions need to be charge and mass balanced, which 
may lead to the addition of protons and water.

The fourth step adds basic thermodynamic considerations to the 
reaction, defining its reversibility. Biochemical characterization studies 
will sometimes test the reversibility of enzyme reactions, but the direc-
tionality can differ between in vitro and in vivo environments because 
of differences in temperature, pH, ionic strength, and metabolite 
concentrations.

The fifth step requires reactions and proteins to be assigned to specific
cellular compartments. This task is relatively straightforward for 
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Figure 3. The five steps to formulate a biochemical reaction. The reaction carried 
out by a metabolic gene product can be determined by the five depicted steps. 
Here, we show the example of the fumarate reductase of E. coli, which converts 
fumarate (FUM) into succinate (SUCC) using menaquinone (MQN) as electron 
donor.
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prokaryotes, which do not exhibit compartmentalization, but becomes 
challenging for eukaryotes, which may have up to 11 subcellular com-
partments (Figure 3). Incorrect assignment of the location of a reaction 
can lead to additional gaps in the metabolic network and misrepresenta-
tion of the network properties. In the absence of experimental data, 
proteins should be assumed to reside in the cytosol to reduce the number 
of intracellular transport reactions, which are also often hypothetical and 
therefore have a low confidence score.

3.3.2. Assembly of Metabolic Network Reconstruction
Once the network reactions are defined, the metabolic network can be 
assembled in a step-wise fashion by starting with central metabolism, 
which contains the fueling reactions for the cell, and moving on to the 
biosynthesis of individual macromolecular building blocks (e.g., amino 
acids, nucleotides, and lipids). The step-wise assembly of the network 
facilitates the identification of missing steps within the pathway that were 
not defined by the 1D annotation. Once well-defined metabolic pathways 
are assembled, reactions can be added that do not fit into these pathways, 
but are supported by the 1D annotation or biochemical studies. Such 
enzymes might be involved in the utilization of other carbon sources or 
connect different pathways.

3.3.3. Gap Analysis
Even genomes of well-studied organisms harbor genes of unknown 
functions (e.g., 20% for E. coli). Subsequently, metabolic networks 
constructed solely on genomic evidence often contain many network 
gaps, so-called blocked reactions. Physiological data may help to deter-
mine whether a pathway is functional in the organism, and thus 
may provide evidence of the missing reactions. This procedure is 
called gap filling, and it is a crucial step in network reconstruction. 
For example, if proline is a nonessential amino acid for an organism, 
then the metabolic network should contain a complete proline bio-
synthesis pathway, even if some of the enzymes are not in the current 
1D annotation. In contrast, if another amino acid, let’s say methionine, 
is known to be required in the medium, then the network gap should not 
be closed, even if only one gene is missing. In this case, filling the gap 
would significantly change the phenotypical in silico behavior of the 
reconstruction.

These examples show that physiological data of an organism provide 
important evidence for improving, refining, and expanding the quality 
and content of reconstructed networks. Reactions added to the network 
at this stage should be assigned low confidence scores if there are no 
genetic or biochemical data available to confirm them. Subsequently, for 
each added reaction, putative genes can be identified using homology-
based and context-based computational techniques. Such added reac-
tions and putative assignments form a set of testable hypotheses that are 
subject to further experimental investigation. Because the reconstructed 
network integrates many different types of data available for an organ-
ism, its completeness also reflects the knowledge about the organism’s 
metabolism. Remaining unsolved network gaps involving blocked reac-
tions or dead-end metabolites reflect these knowledge gaps.
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3.3.4. Evaluation of a Network Reconstruction
Network evaluation is a sequential process (Figure 3). First, the network 
is examined to see if it can generate the precursor metabolites, such as 
biomass components, and metabolites the organism is known to produce 
or degrade. Second, network gaps have to be identified and metabolic 
pathways may need to be completed based on physiological information. 
Finally, the comparison of the network behavior with various experi-
mental observations, such as secretion products and gene essentiality, 
will ensure similar properties and capabilities of the in silico metabolic
network and the biological system. This sequential, iterative process of 
network evaluation is labor intensive, but it will ensure high accuracy 
and quality by network adjustments, refinements, and expansions.

3.4. Automating Network Reconstruction

The manual reconstruction process is laborious and can take up to a year 
for a typical bacterial genome, depending on the amount of literature 
available. Hence, efforts have been undertaken to automate the recon-
struction process. Like most manually assembled reconstructions, most 
automatic reconstruction efforts start from the annotation. For example, 
Pathway Tools (4) is a program that can automate a network reconstruc-
tion using metabolic reactions associated with Enzyme Commision 
numbers (5) and/or enzyme names from a 1D genome annotation. To 
overcome missing annotations, Pathway Tools has the option to include 
missing gene products and their reactions in a pathway if a significant
fraction of the other enzymes are functionally assigned to this pathway 
in the genome annotation. As for the manually curated reconstruction, 
the automated gap filling procedure has to be done with caution, as the 
inclusion of reactions without confidence may alter the phenotypical 
outcome of the reconstruction.

Although the automation of reconstruction is necessary on a larger 
scale, the results of these informatics approaches are limited by the 
quality of the information on which they operate. Therefore, automated 
reconstructions need detailed evaluation to assure their accuracy and 
quality. Frequent problems with these automated reconstructions involve 
incorrect substrate specificity, reaction reversibility, cofactor usage, 
treatment of enzyme subunits as separate enzymes, and missing reactions 
with no assigned ORF. Although an initial list of genes and reactions 
can be easily obtained by using the automated methods, a good recon-
struction of biological networks demands the understanding of pro-
perties and characteristics of the organism or the cell. Because the 
number of experimentally verified gene products and reactions is limited 
for most organisms, knowledge about the metabolic capabilities of the 
organism is crucial.

4. Mathematical Characterization of Network Capabilities

In this section, we briefly illustrate the general philosophy of the con-
straint-based modeling approach that resulted in a growing number of 
mathematical tools to interrogate a reconstructed network. The method 
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relies primarily on network stoichiometry, and thus it is not necessary 
to define kinetic rate constants and other parameters, which are difficult
or impossible to determine accurately in the laboratory. A more com-
prehensive description of the different tools can be found in Palsson’s 
work (6) and in a recently published review (7).

4.1. Stoichiometric Representation of Network

The stoichiometric matrix, denoted as S, is formed by the stoichiometric 
coefficients of the reactions that comprise a reaction network (Figure 1 
and Figure 4). This matrix is organized such that every column corre-
sponds to a reaction, and every row corresponds to a compound. The 
matrix entries are integers that correspond to the stoichiometric coeffi -
cients of the network reactions. Each column describes a reaction, which 
is constrained by the rules of chemistry, such as elementary balancing. 
Every row describes the reactions in which a compound participates, and 
therefore how the reactions are interconnected.

Mathematically, the stoichiometric matrix, S, transforms the flux vector 
v, which contains the reaction rates, into a vector that contains the time 
derivatives of the concentrations. The stoichiometric matrix, thus con-
tains chemical and network information. Mathematically spoken, the 
stoichiometric matrix S is a linear transformation of the flux vector,

v = (v1, v2,  .  .  .  , vn),

to a vector of time derivatives of the concentration vector,

x = (x1, x2,  .  .  .  xn),

as

dx/dt = S.v.

At steady state, there is no accumulation or depletion of metabolites 
in a metabolic network, so the rate of production of each metabolite in 
the network must equal its rate of consumption. This balance of fluxes
can be represented mathematically as

S.v = 0.
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Figure 4. Matrix representation of metabolic network.
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Bounds that further constrain the values of individual variables can 
be identified, such as fluxes, concentrations, and kinetic constants. Upper 
and lower limits can be applied to individual fluxes, such that

vi,min ≤ vi ≤ vi,max.

For elementary (and irreversible) reactions, the lower bound is defined
as vmin = 0. Specific upper limits (vmax) that are based on enzyme capacity 
measurements are generally imposed on reactions.

4.2. Reconstruction Versus Model

The network reconstruction represents the framework for a biological 
model. The definition of systems boundaries provides the transition from 
a network reconstruction to a model. These systems boundaries can be 
drawn in various ways (Figure 5). Typically, the systems boundaries are 
drawn around the cell, which is consistent with a physical entity, and the 
resulting model can be used to investigate properties and capabilities of 
the biological system. However, it might be useful to draw “virtual” 
boundaries to segment the network into subsystems (e.g., nucleic acid 
synthesis or fatty acid synthesis).

The “physical” systems boundaries are drawn to distinguish between 
the inside metabolites of the cell to the outside metabolites and thus, 
correspond to the cell membrane. Reactions that connect the cell and its 
environment are called exchange reactions. These exchange reactions 
allow the exchange of metabolites in and out of the cell boundaries.
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Figure 5. Systems Boundaries. The network reactions are partitioned in internal 
(int) and external (ext) reactions. The exchange fluxes are denoted by bi and
internal fluxes by vi.
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The stoichiometric matrix S (or Stot) can be partitioned such that there 
are three fundamental subforms of Stot: i) the exchange stoichiometric 
matrix (Sexch), which does not consider external metabolites and only 
contains the internal fluxes and the exchange fluxes with the environ-
ment; ii) the internal stoichiometric matrix (Sint), which considers the cell 
a closed system; and iii) the external stoichiometric matrix (Sext), which 
only contains external metabolites and exchange fluxes (Figure 5). These 
different forms of S can be used to study topological properties of the 
network. For example, Sexch is frequently used in pathway analysis 
(extreme pathway analysis), whereas Sint is useful to define pools of 
compounds that are conserved within the network (e.g., currency or 
secondary metabolites such as ATP, NADH, and others).

4.3. Identification of Constraints

Cellular functions are limited by different types of constraints, which can 
be grouped in four general categories: fundamental physicochemical, 
spatial or topological, condition-dependent environmental, and regula-
tory or self-imposed constraints. Although the first two categories of 
constraints are assumed to be independent from the environment, the 
latter two may vary in the simulation.

4.3.1. Physicochemical Constraints
Many physicochemical constraints are found in a cell. These constraints 
are inviolable and provide “hard” constraints on cell functions because 
mass, energy, and momentum must be conserved. For example, the dif-
fusion rates of macromolecules inside a cell are generally slow because 
the contents of a cell are densely packed and form a highly viscous envi-
ronment. Reaction rates are determined by local concentrations inside 
the cell and are limited by mass transport beside their catalytic rates. 
Furthermore, biochemical reactions can only proceed in the direction of 
a negative free-energy change. Reactions with large negative free-energy 
changes are generally irreversible. These physicochemical constraints are 
normally considered when formulating the network reactions and their 
directions.

4.3.2. Spatial Constraints
The cell content is highly crowded, which leads to topological, or spatial, 
constraints that affect both the form and the function of biological 
systems. For example, bacterial DNA is about 1,000 times longer than 
the length of a cell. Thus, on one hand, the DNA must be tightly packed 
in a cell without becoming entangled; however, on the other hand, the 
DNA must also be accessible for transcription, which results in spatial-
temporary pattern. Therefore, two competing needs, which are the pack-
aging and the accessibility of the DNA, constrain the physical arrangement 
of DNA in the cell. Incorporating these constraints is a significant chal-
lenge for systems biology.

4.3.3. Environmental Constraints
Environmental constraints on cells are time and condition dependent. 
Nutrient availability, pH, temperature, osmolarity, and the availability of 
electron acceptors are examples of such environmental constraints. This 
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group of constraints is of fundamental importance for the quantitative 
analysis of the capabilities and properties of organisms because it allows 
determining their fitness, or phenotypical properties, under various 
environmental settings. Because the performance of an organism varies 
under different environmental conditions, data from various laboratories 
can only be compared and integrated when the experimental conditions, 
such as medium composition, are well documented. In contrast, labora-
tory experiments with undefined media composition are often of limited 
use for quantitative in silico modeling.

4.3.4. Regulatory Constraints
Regulatory constraints differ from the three categories discussed above, 
as they are self-imposed and subject to evolutionary change. For this 
reason, these constraints may be referred to as regulatory constraints, in 
contrast to hard physicochemical constraints and time-dependent envi-
ronmental constraints. On the basis of environmental conditions, regula-
tory constraints allow the cell to eliminate suboptimal phenotypic states. 
Regulatory constraints are implemented by the cell in various ways, 
including the amount of gene products made (transcriptional and trans-
lational regulation) and their activity (enzyme regulation).

4.4. Tools For Analyzing Network States

The analysis of an organism’s phenotypic functions on a genome scale 
using constraint-based modeling has developed rapidly in recent years. 
A plethora of steady-state flux analysis methods can be broadly classified
into the following categories: i) finding best or optimal states in the 
allowable range; ii) investigating flux dependencies; iii) studying all 
allowable states; iv) altering possible phenotypes as a consequence of 
genetic variations; and v) defining and imposing further constraints. In 
this section, we will discuss some of the numerous methods that have 
been developed (Table 2). A more comprehensive list of methods can be 
found in Price’s work (7).

4.4.1. Optimal or Best States
Mathematical tools, such as linear optimization, can be used to identify 
metabolic network states that maximize a particular network function, 
such as biomass, ATP production, or the production of a desired 
secretion product. The objective function can be either a linear or non-
linear function. For linear functions, linear optimization or linear pro-
gramming (LP) can be used to calculate one optimal reaction network 
state under the given set of constraints. Growth performance of an 
organism can be assessed by calculating the optimal (growth) solution 
under different medium conditions. Using visual tools, such as metabolic 
maps, the optimal network state can be easily accessed and compared. 
This mathematical tool has been widely used for the identification of 
optimal network states for the objective function of interest. Interest-
ingly, for genome-scale networks in particular, there can be multiple 
network states or flux distributions with the same optimal value of the 
objective function; therefore the need for enumerating alternate optima 
arises.
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4.4.2. Alternate Optima
Alternate optima are a set of flux distributions that represent equally 
optimal network states given any particular objective function. The 
number of such alternate optima varies depending on the size of the 
metabolic network, the chosen objective function, and the environmental 
conditions. In general, the larger and more interconnected the network, 
the higher the number of alternate optimal phenotypes. A recursive 
mixed-integer LP algorithm has been developed to exhaustively enumer-
ate all alternate optima (8). Genome-scale metabolic networks contain 
several redundant pathways, which makes the enumeration of all optima 
computationally challenging.

4.4.3. OptKnock
OptKnock is a bilevel optimization algorithm to computationally predict 
gene deletion strategies for byproduct overproduction, such as succinate, 
lactate, and amino acids. The OptKnock algorithm calculates solutions 
that simultaneously optimize two objective functions, which are biomass 
formation and secretion of a target metabolite. Multiple gene deletions 
can be introduced in the metabolic network, such that the fluxes through 
reactions of the target metabolite are optimally used, while reactions 
leading to other byproducts from common precursors are deleted from 
the network. The premise underlying this bilevel optimization algorithm 

Table 2. List of constraint-based modeling methods.
Analysis  Applied metabolic 
Method Illustration networks References

Optimal solutions  Escherichia coli 35An Optimal
Solution

Alternate Optima  Escherichia coli, human 8, 36, 37
cardiac myocyte
mitochondrion

Equivalent
Optimal Solutions

OptKnock Escherichia coli 12, 38

Biomass Production

M
et
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e 

P
ro
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ct

io
n

Knockout

Biomass Production

M
et

ab
ol

it
e 

P
ro

du
ct

io
n

Knockout

Wild type

Sampling  Red blood cell, 39, 42
Helicobacter pylori,
human cardiac myocyte
mitochondrion

A myriad of analytical methods have arisen over recent years. The methods discussed in 
this chapter are depicted in this table along with some metabolic networks that have been 
applied to study network properties. Redrawn from Price (7).
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is that overproduction of target metabolites can be achieved by altering 
the structure of the metabolic network through gene deletions. With this 
direct stoichiometric coupling of target metabolite production to biomass, 
it is hypothesized that an increase in growth rate should concurrently 
result in an increase in the target metabolite production rate.

4.4.4. Unbiased Modeling
In addition to the above listed examples of optimization-based methods, 
non–optimization-based techniques have also been developed to study 
the full range of achievable metabolic network states that are provided 
by the solution spaces. These methods enable the user to determine not 
only the solutions selected by the statement of an objective, but all the 
solutions in the space. The results are therefore not biased by a statement 
of an objective, but indicate properties of the genome-scale network as 
a whole. Uniform random sampling is one example of an unbiased 
method. Here, the solution space is sampled by calculating uniform, 
random points within the space. The content of a solution space can be 
studied by the set of uniform random sampling of points within the space. 
The sampling points describe candidate metabolic states that are in 
agreement with the imposed constraints. The projection of the sampling 
point into a 2D diagram results in a flux distribution for every reaction 
in the network that can be understood as a probability distribution of 
flux values for every reaction.

The methods described in this section have been successfully used 
to characterize and investigate the network capabilities of numerous 
genome-scale metabolic networks. Until recently, it has focused on the 
steady-state flux distributions through a reconstructed network, but is now 
being used to study all allowable concentration and kinetic states (9).

5. Two Sample Studies

In this section, we will highlight two studies that combined in silico 
analysis and experimental data to gain new insight into the metabolism 
of E. coli.

5.1. “Integrating High-throughput and Computational Data 
Elucidates Bacterial Networks” (10) (Figure 6)

Regulatory constraints are used by cells to control the expression state 
of genes, leading to distinct sets of expressed genes under different envi-
ronmental conditions. Assuming the expression state of a gene can be 
only on or off (expressed or depressed), the regulation of genes can be 
represented in the form of Boolean rules (on or off, 1 or 0).

For the purpose of this study, the regulatory rules for the metabolic 
genes included in iJR904 (11) were created and incorporated based on 
literature and databases. The resulting reconstruction, MC1010v1, was 
the first integrated genome-scale in silico reconstruction of a transcrip-
tional regulatory and metabolic network. MC1010v1 accounted for 1,010 
genes in E. coli, including 104 regulatory genes whose products, together 
with other stimuli, regulate the expression of 479 of the 904 genes in the 
reconstructed metabolic network.
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To determine the importance of regulatory rules on the predictive 
potential of the metabolic reconstruction, both reconstructions, iJR904
(unregulated metabolic network) and MC1010v1 (regulated metabolic 
network), were used to calculate in silico growth performance under 
different medium conditions and to assess the outcome of gene deletion 
to the growth performance. The in silico results were compared with the 
outcomes of high-throughput growth phenotyping and gene expression 
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Figure 6. “Integrating high-throughput and computational data elucidates bac-
terial networks.” Top Panel: Comparison of high-throughput phenotyping array 
data with the in silico predictions for the E. coli network, with (Reg) and without 
(Met) regulatory constraints. Each case lists the results of the experimental data 
(exp), metabolic model (met) and regulatory metabolic model (reg). “+”: pre-
dicted or observed growth, “−”: no growth, and ‘n’: for cases involving a regula-
tory gene knockout not predictable by the metabolic model.
Bottom Panel: Metabolic and regulatory networks may be expanded by using 
high-throughput phenotyping and gene expression data coupled with the predic-
tions of a computational model. The accuracy refers to the percentage of model 
predictions that agreed with experimental data; the coverage indicates the 
percentage of experimental changes predicted correctly by the model. Redrawn 
from (10).
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experiments (Figure 6). Based on these results, several substrates and 
knockout strains were found whose growth behavior did not match 
predictions. Further investigation of these conditions and strains led to 
the identification of five environmental conditions in which dominant, 
yet uncharacterized, regulatory interactions actively contributed to the 
observed growth phenotype. In addition, five environmental conditions 
and eight knockout strains were identified that highlight uncharacterized 
enzymes or noncanonical pathways and that are predicted to be used by 
this study. Furthermore, the results indicated that some transcription 
factors that were involved in the regulation differed from previously 
reported data. These new rules were incorporated in the reconstruction 
leading to a second version, MC1010v2, which could successfully predict 
the outcome of high-throughput growth phenotyping and gene expres-
sion experiments.

The results of this study, and the iterative modification of the regula-
tory rules, led to two main observations. First, some of the results of the 
knockout perturbation analysis are complex enough to make Boolean 
rule formulation difficult. Second, many of these gene expression changes 
involve complex interactions and indirect effects. Transcription factors 
may be affected, for example, by the presence of fermentation byprod-
ucts or the buildup of internal metabolites. Such effects would be 
extremely difficult to identify or account for without a computational 
model.

This study showed that the reconciliation of high-throughput data sets 
with genome-scale computational model predictions enables systematic 
and effective identification of new components and interactions in micro-
bial biological networks.

5.2. “In Silico Design and Adaptive Evolution of Escherichia coli for 
Production of Lactic Acid” (12) (Figure 7)

In this study, OptKnock was used to design candidate knockout mutations 
in silico, which were subsequently analyzed and verified experi mentally. 
The overall goal was to create an E. coli mutant that could overproduce 
lactic acid in minimal medium supplemented with glucose. In contrast, 
E. coli wild type produces only traces of lactate under this medium con-
dition. Other studies already engineered lactate-overproducing E. coli
mutants; however, in this study it was shown how to use metabolic recon-
structions to successfully engineer stable mutants.

The most recent reconstruction of E. coli’s metabolism, iJR904 (11), 
was used by the OptKnock algorithm to identify the possible solutions 
that induce E. coli to secrete lactic acid as a byproduct during optimal 
cellular growth. For this purpose single, double, triple, and quadruple 
gene deletions were designed in silico and tested for bioptimal produc-
tion of lactic acid and growth yield. Based on these calculations, three 
different designs for production of lactate were selected for experimental 
verification: (i) pta-adhE double-deletion strain, (ii) pta-pfk double-
deletion strain, and (iii) pta-adhE-pfk-glk quadruple deletion strains 
(pta, phosphate acetyltransferase; adhE, acetaldehyde dehydrogenase; 
pfk, 6-phosphofructokinase; glk, glucokinase) (Figure 7).
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Predicted strain designs were constructed in vivo and evolved over 
60 d. Over this time period, the growth rates of constructed strains and 
the byproduct secretion rates were monitored. By measuring these 
growth rates and lactic acid secretion rates, as well as the glucose uptake 
rates, the experimental phenotypes could be directly compared to the 
computationally predicted possible solutions for each design. Both 
the pta-adhE strains and the pta-pfk strains showed good agreement 
with the computationally determined solution spaces. In all cases, the 
byproduct secretion profiles stabilized after approximately 20 d of adap-
tive evolution, with all strains showing sustained elevated lactic acid 
titers throughout the course of adaptive evolution over the wild-type 
strain.

The goal of this study was to experimentally test computationally 
predicted strain designs calculated from a genome-scale metabolic model 
using the OptKnock algorithm. For the generated designs, it was shown 
that this combination of computational approaches can prospectively 
and effectively calculate strain designs for lactic acid overproduction. 
The long-term adaptive evolution experiments showed that: i) the com-
putationally predicted phenotypes are experimentally reproducible and 
consistent; ii) the process of adaptive evolution leads to increased secre-
tion rates of a target metabolite and can lead to improved product titers; 
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Figure 7. “In Silico Design and Adaptive Evolution of Escherichia coli for
Production of Lactic Acid.” A: schematic picture of the pathways in which the 
gene deletions are involved. B: Strain design 1 (adhE−,pta−). Top panel: growth
performance and lactate secretion at the beginning of adaptive evolution (day 
0), in the middle (day 30) and at the end (day 60). The computational predictions 
(lines) were done based on the glucose uptake rate (GUR) measured in the 
deletion strain at the different time points. The bottom panel shows the byprod-
uct secretion rates for the mutant strain during the course of adaptive evolution. 
It is easily visible that lactate becomes the main fraction of byproduct. Redrawn 
from (12).
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and iii) the generation of stable production strains can be achieved 
through this method. Overall, all evolved strains exhibited secretion 
profiles that supported the OptKnock hypotheses, in which the 
metabolite overproduction was stoichiometrically coupled to biomass 
generation.

6. Further Levels of Annotation

The majority of this chapter focused on the second dimension 
of genome annotation that defines the network links between the 
components given by the 1D annotation. In this section, we will briefly
look at the remaining two dimensions, i.e., space and time. Although 
no reconstruction exists to date that considers these two additional 
dimensions, further research will provide the basis, and thus enable such 
reconstructions.

6.1. 3D Annotation: Spatial Position and Orientation

In the previous sections, we saw that the 1D annotation delivers 
a list of genes and their functions, which can be translated into a table 
of gene products and their known interactions (2D annotation). These 
interaction networks must operate within the three dimensional struc-
ture of a cell. A growing number of studies indicate that both the genomic 
location (i.e., the linear allelic address), as well as the spatial location 
(i.e., the position of a gene within the cell) of a gene is important 
in genome function (13). In addition, the growth phase of a cell influences
the geometrical, and therefore topological, organization of a genome. 
An explicit link between the geometrical organization of the genome 
and the expression level of individual genes has yet to be established. 
However, log phase growth clearly requires many genes to be expressed 
contemporaneously, which cannot be achieved with a condensed 
chromosome.

6.1.1. 4D Annotation: Evolutionary Changes
Genomes can undergo short-term adaptive changes; thus, one can 
think of a fourth dimension to the genome—time. Such changes can be 
caused epigenetically or genetically, leading to modification in genome 
function over time. Mechanisms and how they function during adapta-
tion have been studied for individual loci (such as arcB [14], mglD 
[15], mglO [15], and glpR [16] in E. coli), but have not yet been elucidated 
on a genome scale, with the exception of genome rearrangements. 
It is becoming appreciated that the genome sequence we have are 
“snap-shots” of a genome that is continually evolving. Thus, a more 
detailed understanding of the plasticity and adaptation of genomes 
on a genome scale is needed. The genetic basis for adaptation of genomes 
may emerge from full genome resequencing, enabling us to fully deter-
mine all the sequence changes that occur in genomes. Furthermore, 
resequencing may have the potential to provide insights into the mecha-
nisms and functions of these adaptive evolutionary changes of an entire 
genome.
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7. Future Directions

The four dimensions of genome annotation are important for describing 
and capturing the functional capabilities of a cell. A detailed, quality-
controlled, and quality-assessed process for genome-scale reconstruction 
of metabolic networks (as an example of a 2D annotation) has developed 
over the past 5–10 years (17,18). It is a laborious and detailed process 
that involves the manual curation of a wide range of data types. Some-
what similar to sequence assembly and 1D genome annotation, this 
process of 2D annotation is iterative, involving the successive addition 
of more and more detailed data as they become available for a particular 
organism. These high-quality reconstructions can be used as the basis for 
computation of phenotypic traits, and they represent a key step in the 
development of the burgeoning field of systems biology (6). The number 
of organisms with publicly available genome-scale reconstructions con-
tinues to grow (Table 1).

Although the focus of this chapter was on metabolic networks, other 
networks, such as protein interaction, signaling, and regulatory networks, 
can be reconstructed in a similar manner. The nature of these networks 
is often qualitative in nature; the description of its components and 
their interactions may lack the biochemical details of metabolic recon-
structions. However, these networks abide by the same chemical laws 
governing metabolic networks, such as conservation of mass and energy. 
Thus, many of the reconstruction details presented in this chapter are 
transferable to these networks if the details, such as stoichiometry, 
are known.
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From Gene Expression to 

Metabolic Fluxes
Ana Paula Oliveira, Michael C. Jewett, and Jens Nielsen

Summary

The development of genome-wide high-throughput technologies to iden-
tify and map cellular components and to quantify different types of cel-
lular molecules has offered new possibilities for the study of biological 
systems. In the field of metabolic engineering, which deals with the ratio-
nal redirection of metabolic fluxes toward a product of interest through 
the introduction of targeted genetic modifications, it is of interest to have 
tools and models that relate genotype and phenotype. Here, we illustrate 
how systems biology approaches are being used in metabolic engineering 
to explore properties and capabilities of microbial cells, to uncover 
hidden regulatory mechanisms, and to design enhanced microbial cell 
factories. Several “omics” technologies that are particularly useful for 
metabolic engineering are described, including methods for quantifica-
tion of mRNA levels, metabolite concentrations, and fluxes through reac-
tions. Furthermore, we review classical and integrative methods for 
analysis of omics data and describe several mathematical models used 
to predict phenotypic behavior based on the metabolic network struc-
ture. Because metabolic networks and metabolic fluxes are at the core 
of metabolic engineering, a brief introduction to the characteristics of 
genome-scale metabolic networks and to key aspects of regulation and 
control of metabolic fluxes are also referred.

Key Words: Systems biology, metabolic engineering, metabolic network, 
regulatory networks, transcriptome analysis, data integration, phenotypic 
behavior, predictive models.

1. Introduction

Cells are complex systems encoding and executing the functions of life, 
toward their survival, growth, and reproduction. The many different 
functionalities in living cells are organized in hierarchical levels of infor-
mation, which are controlled by intricate regulatory structures. The 
genome of a cell specifies the total potential inventory of cellular 
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resources, and the genes within the genome are expressed and translated 
into proteins that are responsible for the various functions operating 
within the cell. Proteins can have a catalytic role (enzymes), catalyzing 
reactions, a structural role, such as actin, or a regulatory role, e.g., inhibit-
ing/activating the function of another protein or the expression of a gene. 
Often, proteins interact in regulatory networks, contributing to the 
robustness of a given cellular response. These regulatory structures are 
responsible for the efficient utilization of the available cellular resources 
and relocation of these resources under stress conditions.

To grow, cells require nutrients (or substrates), which in turn will be 
used to supply the cell with the free energy, redox power, and precursor 
metabolites needed to fuel cellular processes such as growth and main-
tenance. Substrates are converted to precursor metabolites, and then to 
macromolecules (preceding the assembly of biomass), through reactions 
catalyzed by enzymes. This process is called metabolism, and the mani-
festation of the operation of metabolism is herein referred to as pheno-
type. Box 1 introduces essential concepts on metabolism.

With the advent of genome sequencing, the post-genomic era has 
offered the possibility of identifying the elements of the cellular inven-
tory: which genes are in the genome, which proteins they encode for, and 

Box 1. Metabolism, Fluxes, and Networks

It is through metabolism that cells generate the energy and precursor 
metabolites needed to fuel all cellular processes. Typically, a microbial 
cell needs several substrates to grow: a carbon source (e.g., glucose), 
a nitrogen-source (e.g., NH3), and trace amounts of other compounds, 
such as phosphate, sulfur, and calcium. Once the carbon source enters 
the cell, it is degraded and oxidized in a sequence of enzymatic steps 
toward 12 precursor metabolites, a process referred to as catabolism.
During this process, free Gibbs energy is generated in the form of 
ATP, and redox power is produced in the form of NADH and NADPH. 
Catabolism is often accompanied by the formation and secretion of 
byproducts (e.g., CO2, ethanol, acetate, glycerol), which are products 
associated with the production of more ATP and/or involved in recy-
cling NAD(P)H surplus not used in other processes. Once the precur-
sor metabolites, energy, and redox power are available, they are used 
in biosynthetic reactions to produce the building blocks of the cell, 
i.e., the preceding elements for the assembly of macromolecules, such 
as proteins, DNA, and RNA. This process leading to the assembly of 
biomass components is also known as anabolism, and is an ATP-
demanding process.

Enzymatic reactions catalyze the conversion of chemical com-
pounds (or metabolites) into others, and the rate of conversion is 
referred to as metabolic flux. Often, the term metabolic pathway is 
used to describe any sequence of observable enzymatic reactions con-
necting two metabolites in a related process. More generally, the term 
metabolic network refers to a part or the whole set of connected 
metabolic reactions.
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what are their functions. It also triggered the development of several 
analytical techniques, allowing the simultaneous quantification of mole-
cules such as mRNA and proteins, at a genome-scale level. Additionally, 
other large-scale analytical techniques are available that allow quantifi -
cation of the metabolic state, i.e., that describe the metabolic fluxes
through reactions and metabolite concentrations in the cell at a given 
time. These advances in analytical and computational methods have 
shifted the focus of modern biology from a traditional “local” reduc-
tionist approach to a “global” holistic perspective of the cellular pro-
cesses (1,2).

Viewing the cell as a network of interacting genes, proteins, and reac-
tions offers the opportunity to dissect cellular complexity and represent 
the cell as a simplified system that can be used to relate genotype and 
phenotype. The integration of these structural networks with quantified
molecular and metabolic elements has been termed systems biology 
(1,3,4). Despite the widespread use of this term, methodologies and goals 
vary depending on the application. Figure 1 summarizes the different 
perspectives and goals underlying the concept of systems biology in 
three different areas of science: health sciences, basic sciences, and 
engineering.

In this chapter, we focus on the use of systems biology as a framework 
to develop models and tools to explore the emergent properties and 
capabilities of microbial systems, to elucidate hidden regulatory mecha-
nisms and to design newly enhanced strategies for producing microbial 
cell factories with desired phenotypes. Several functional genomics 
tools are described, and their use in identifying metabolic traits of 

Figure 1. Impact of systems biology in different areas of science. Systems biology 
arose as a field that aims to answer questions posed by basic sciences using 
modern system-level biology tools derived from omics technologies. Today, 
systems biology approaches are becoming widely applied in engineering and 
health sciences.
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interest is exemplified. Finally, we highlight the importance of selecting 
appropriate mathematical models for data analysis and experimental 
design.

2. Engineering a Cell: A Systems Approach

2.1. Strain Improvement and Metabolic Engineering

Microbial cells are widely exploited by the pharmaceutical and chemical 
industries for the production of a variety of compounds, ranging from 
metabolites to proteins and even to entire cells. Products derived from 
microbial fermentation include chemicals like ethanol and lactic acid, 
food ingredients like citric acid and glutamate, antibiotics, industrial 
enzymes (such as the ones used in the detergent and starch industries), 
and high-value therapeutic proteins such as insulin, growth hormone, and 
interferons. The number of products deriving from microbial fermenta-
tion is likely to grow in the future, not only because of the increasing 
tendency to replace petrochemical processes with more environmentally 
friendly processes, but also because of the growing interest in developing 
novel compounds with potential valuable commercial applications. 
Moreover, there is a continuous industrial interest in improving produc-
ing strains.

Traditionally, the selection of the “best” microorganism with the 
desired phenotype is made through the screening of a large collection of 
microbial cultures, followed by the exposure of the selected strain to 
random mutagenesis. Improved “randomly mutated” strains for the 
desired properties are selected this way for industrial purposes. There 
are numerous cases where yields of compounds of interest have been 
increased several-fold. For example, penicillin production by Penicillium
chrysogenum has been increased more than 2,000-fold since the 1950s, 
through classic strain improvement programs and process optimiza-
tion (5).

The advent of genetic engineering in the 1970s, and advances in molec-
ular biology during the last few decades, has offered the opportunity of 
performing targeted genetic modifications in many organisms. This has 
paved the way for a more rational approach for strain improvement by 
allowing the introduction of direct genetic modifications that can be used 
to redesign the metabolic capabilities of a cell—an approach referred to 
as metabolic engineering (6–8). Through metabolic engineering, one can 
aim at redirecting fluxes and improving cellular activities by manipulat-
ing the enzymatic, regulatory, and transport functions of the cell using 
recombinant DNA technologies (6). These technologies offer not only 
the possibility of inserting, deleting or overexpressing homologous genes 
but also allow the insertion of heterologous genes, i.e., genes originating 
from other organisms. The number of potential metabolic modifications
to be explored is, therefore, enormous.

To be successful, metabolic engineering requires an efficient interplay 
between the analysis of cellular function and genetic engineering. The 
effect of a genetic modification can be assessed at the metabolic level 
through physiological characterization and analysis of the metabolic 
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state. Analytical techniques for flux analysis and metabolite profiling are 
typically used in metabolic engineering to evaluate metabolic changes 
between modified and reference strains. Other analytical measurements, 
such as enzymatic activities, mRNA levels, and protein levels give direct 
information on how the cellular inventory responds, but may not have a 
trivial relationship with the physiological response (9). Analysis of the 
metabolic state with the appropriate mathematical and metabolic models 
plays an important role in designing the next round of improvements. 
A successful metabolic engineering application typically results from the 
continuous improvement of the desired cellular property through several 
rounds of experiment, analysis, and design (8).

2.2. Metabolic Networks and Regulation of Metabolic Fluxes

Metabolic networks and metabolic fluxes are at the core of metabolic 
engineering. Metabolic networks represent the topology of metabolism, 
which is the set of possible conversion routes, whereas metabolic fluxes
reflect the result of cellular component interactions, i.e., how the differ-
ent metabolic pathways within the metabolic network are being used. As 
the objective of metabolic engineering is to optimize the fluxes through 
dedicated pathways leading to the product of interest, quantification of 
intracellular fluxes in vivo is a central issue in metabolic engineering. 
Because intracellular fluxes are difficult to obtain from direct measure-
ments, indirect methods are called for. Quantification of intracellular 
fluxes typically requires the development of a metabolic model combin-
ing the structure of the network with the experimental measurements of 
extracellular fluxes (7,10). To further constrain the model-estimated 
fluxes, one may use labeled substrates, combined with analysis of the 
specific carbon labeling of different pathway metabolites (11). Stoichio-
metric metabolic models, derived from fundamental principles of con-
servation of mass and energy, are particularly useful for quantification
of metabolic fluxes. Besides quantification of metabolic fluxes, it is desir-
able to understand how the fluxes in metabolic pathways are controlled 
and how the individual enzymes are regulated, as this may lead to ratio-
nal modification of the network operation, and thereby lead to improved 
fluxes toward the product of interest, which is often the goal in metabolic 
engineering.

In the following sections, we introduce genome-scale metabolic net-
works and elaborate on how hierarchical regulation and control is 
exerted by the cell, contributing to the robustness of metabolic response 
under genetic and environmental perturbations.

2.2.1. Genome-Scale Metabolic Networks
In the last decade (1995–2005), more than 180 genomes from differ-
ent organisms in all three kingdoms have been sequenced (www.
genomenewsnetwork.org). These advances were accompanied by the 
development of powerful bioinformatics tools used for genome annota-
tion and protein function prediction. As a result, it has been possible to 
identify nearly all genes (or, more correctly, Open Reading Frames: 
ORFs) in a genome and assign a function to many of the identified gene 
products. Annotation of the genome therefore offers the opportunity to 
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explore the whole enzymatic and transport potential of a cell, allowing 
the reconstruction of the corresponding genome-scale metabolic network. 
These networks are simply the set of all potential reactions and transport 
steps occurring in a cell, written in a stoichiometric representation. For 
more details on reconstruction of genome-scale metabolic networks, see 
Chapter 2 in this book.

Genome-scale metabolic networks have played a key role in the sys-
temic analysis of cellular function (12–14) and in the development of 
truly genome-wide integrative models relating genotype and phenotype 
(2,15–17). For instance, it has been shown that the network structure by 
itself can be used to deduce network functionality and regulatory infor-
mation (12,18). A well-known application of genome-scale metabolic 
networks is flux balance analysis (FBA). This mathematical framework 
based on linear programming has been successfully used to model pheno-
typic behavior under (pseudo) steady-state conditions. More recently, a 
method combining the genome-scale network, represented as a graph, 
and gene expression data have been reported to identify co-regulated 
metabolic modules and key points in metabolism around which the most 
changes in expression occur, the so called reporter metabolites (15).

In a work by Jeong and coworkers, the representation of genome-scale 
metabolic networks as a graph has contributed to insight into the topo-
logical properties of these networks, while revealing common metabolic 
organization among species (14). In their graph representation, nodes 
correspond to metabolites, and edges connecting the nodes correspond 
to reactions. Using the networks of 43 organisms, they showed that meta-
bolic networks are scale free and exhibit the typical characteristics of a 
small-world network. In other words, this means that most of the nodes 
have few neighbor edges, whereas few nodes have many neighbors, and 
that the average distance between any two metabolites is very small 
(approximately 3 nodes away from each other). This high degree of 
connectivity of metabolic networks is characteristic of robust and error-
tolerant networks, suggesting that organisms have evolved toward robust 
systems to respond efficiently to external changes or internal errors 
(14,19).

Because of constraints posed by mass balances around all metabolites 
within the cell, the stoichiometry of the whole metabolic network defines
the boundaries of metabolic capabilities. In vivo, however, the number 
of possible flux distributions is confined to a smaller set of fluxes, as 
metabolic fluxes are tightly controlled by complex and hierarchical regu-
latory mechanisms, as described in the following section.

2.2.2. Control and Regulation of Metabolic Fluxes
Metabolic fluxes reflect the final outcome of the cellular orchestration 
under defined genetic and environmental conditions. According to the 
central dogma of biology, the digital code of life is encoded in the DNA, 
and the encoding entities are called genes. When a gene is expressed, 
information flows from DNA, to mRNA, to protein, to functional protein 
(Figure 2). This dogmatic view suggests that, ultimately, the mRNA level 
of a gene correlates with the amount of functional protein and, conse-
quently, with the flux through reaction (in case of an “enzymatic gene”). 
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However, because of different levels of cellular control and kinetic prop-
erties of enzymes, such correlations may not be present. These different 
levels of control give the cell the flexibility and robustness needed to 
closely balance the rates of synthesis and conversion of metabolites over 
a wide range of external conditions, avoiding the complete depletion of 
intracellular metabolite pools (7). The control strength exerted by the 
different enzymes of a pathway can be assessed through metabolic 
control analysis, a sensitivity analysis framework developed to quantify 
the response of fluxes and metabolite pools to changes in kinetic and 
biochemical parameters of enzymes (7,20,21).

Flux control can be exerted by the cell at the following different levels: 
transcriptional level, mRNA degradation level, translational level, by 
protein activation/inactivation, and by allosteric regulation of enzymes 
(22). This complex and (somehow) hierarchical control structure requires 
the existence of intricate mechanisms for sensing and signaling. Sensing 
of a “key” metabolite/protein concentration or metabolic flux can trigger 
a signaling cascade or a feedback loop, leading to a certain level of 
control. However, identification of these regulatory structures represents 
a major challenge in modern biology.

Mapping all elements involved in the control of metabolism offers the 
opportunity to establish metabolic engineering strategies based on relief 
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Figure 2. The central dogma. According to the central dogma of biology, infor-
mation flows from DNA, to mRNA, to proteins, to functional proteins. Informa-
tion is encoded in the DNA within entities called genes, which are transcripted 
into mRNA, and then translated into proteins. Proteins carry out the functions 
to operate the cell, such as catalyzing reactions (P1 to P5) and inhibiting/activat-
ing the expression of genes (P6). It is through metabolism that cells convert 
nutrients into free energy, redox power, and precursor metabolites needed to fuel 
cellular processes such as growth and maintenance. The fluxes through reactions 
are tightly controlled to keep the metabolite pools balanced. Metabolites can 
also exert cellular control (e.g., high levels of P activate P1 and repress P6).
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of regulatory control. Ostergaard and co-workers (23) illustrated this by 
manipulating the GAL-regulon of Saccharomyces cerevisiae. The GAL 
system is a tightly regulated system involved in galactose utilization. 
In their work, they showed that the disruption of three genes encoding 
the negative regulators Gal6, Gal81, and Mig1 resulted in a significant
increase in flux through the galactose utilization pathway.

The flow of information from genes to mRNA to proteins also suggests 
that, hierarchically, regulation may be dominant at the transcriptional 
level. In other words, it suggests that one of the main ways the cell has 
to respond to a perturbation may be through the expression or repres-
sion of some of its genes. But how can we identify other types of control, 
and how does mRNA level relate to protein abundance, enzyme activity, 
and metabolic fluxes? A simplified answer for these questions is that the 
lack of correlation between two types of measurements, e.g., between 
mRNA levels and protein abundance, indicate the intermediate occur-
rence of some type of control, in this case mRNA degradation or trans-
lational control. Ter Kuile and Westerhoff (24) proposed a method to 
identify if control is being dominated at the gene expression level (i.e., 
hierarchical regulation) or at the metabolic level. They proposed that 
regulation of fluxes through enzymes can be divided into a hierarchical 
regulation term, ρh, and a metabolic regulation term, ρm, whose sum 
should equal one. From their analysis on glycolytic enzymes, they con-
clude that regulation is rarely completely hierarchical. Nevertheless, 
their method does not enable differentiation of hierarchical regulation 
into different levels, e.g., transcriptional regulation and regulation at the 
posttranscriptional level.

Gygi et al. (25) and Futcher et al. (26) determined the correlation 
between mRNA and protein abundance in the yeast S. cerevisiae, and 
found that a linear correlation exists, although it is not very strong (in 
the later study, the Pearson correlation coefficient was 0.76). These analy-
ses were based on less than 150 protein spots and corresponding mRNA 
abundances. Daran-Lapujade and co-workers (27) compared mRNA 
levels with flux distributions in the central carbon metabolism of S. cere-
visiae growing in different carbon sources, under steady-state conditions. 
They observed three distinct types of correlation: (i) a very strong cor-
relation for enzymes in gluconeogenesis and the glyoxylate cycle, whose 
encoding genes are known to be strongly regulated at the transcriptional 
level; (ii) a medium correlation for enzymes in the tricarboxylic acid 
cycle and pentose-phosphate pathway, suggesting a shared regulation 
between transcription control and other levels of control; and (iii) a lack 
of correlation for enzymes in the glycolysis, pointing to regulation at the 
posttranslational and/or metabolic level in this pathway. This work high-
lights the fact that transcriptional data by itself may have a limited 
capability in predicting phenotype, only describing what is happening at 
the transcriptional control level. Understanding other levels of flux
control therefore requires the quantification of other molecular compo-
nents and the identification of how these components interact. Neverthe-
less, measuring mRNA abundance is currently the only truly genome-wide 
analytical method available, and, although not exact, in the absence of 
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more information it is often assumed that messenger RNA (mRNA) 
levels are proportional to the corresponding enzymatic fluxes.

2.3. Improving Metabolic Engineering Using Omics Data

Genome-wide or large-scale quantification of molecular components 
and experimental assessment on how these components interact have 
offered to metabolic engineering the possibility of getting a broader 
insight into cellular function and into the effects of genetic and environ-
mental perturbations. Omics data include quantification of mRNA tran-
scripts levels (transcriptome), protein abundance (proteome), metabolic 
fluxes (fluxome), intracellular and extracellular metabolites concentra-
tion (metabolome), and information on protein–protein and protein–
DNA interactions (interactome). To efficiently extract relevant biological 
insight from these vast amounts of data, appropriate and goal-dependent 
tools and models are required. The use of omics data in metabolic engi-
neering have been applied with different purposes, namely: (i) in the 
identification of a metabolic trait of interest, using reverse engineering; 
(ii) in the reconstruction of regulatory and signaling networks that can 
later be used as targets for metabolic engineering; (iii) in understanding 
emergent cellular properties; and iv) in the development of models to 
predict metabolic behavior (Figure 3).

2.3.1. Identifying Metabolic Traits of Interest
In metabolic engineering, it is generally of interest to identify the genes 
that confer a desired phenotype (for instance, to seek the rationale 
behind a strain improved by classic mutagenesis). This type of problem 
can be solved using a reverse engineering approach. Reverse metabolic 
engineering can be defined as the process of dissecting a cell and ana-
lyzing its components, with the intention of later reconstructing the 
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Figure 3. The metabolic engineering cycle in the systems biology era.
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components that confer a desirable phenotype. Omics data, particularly 
gene expression data, are particularly useful for this purpose (28,29). Bro 
and co-workers followed a reverse engineering approach to improve the 
flux through the galactose utilization pathway in S. cerevisiae (30). They 
used DNA microarrays to analyze the gene expression levels of three 
selected strains: a wild type and two strains previously improved by 
metabolic engineering for galactose utilization (23). Looking at the sig-
nificant changes in gene expression among the three strains, they identi-
fied the gene PGM2 as being up-regulated in the two strains with 
improved galactose utilization capabilities. Further analysis of enzymatic 
activity supported the hypothesis that Pgm2 may be involved in the 
utilization of galactose. Subsequently, they overexpressed PGM2 and
observed an increase of 70% in the galactose uptake rate, as compared 
to the wild type.

Askenazi and co-workers planned a more sophisticated experiment to 
improve lovastatin production in Aspergillus terreus, integrating metabo-
lite profiling and gene expression analysis (31). They first designed and 
engineered a collection of strains producing different amounts of lova-
statin, ranging from very low to very high producers. Metabolite profiling
was then conducted to quantify lovastatin and several other secondary 
metabolites in all strains. Next, genome-wide gene expression levels were 
measured for several selected strains (more than 10). The two types of 
data were analyzed together using clustering, principal component analy-
sis (PCA), and other advanced statistical techniques. Several genes were 
identified by these methods as conferring improved lovastatin yields. 
Overexpression of one of those genes, LOVF, contributed for the 
increased production of this secondary metabolite.

2.3.2. Reconstruction of Regulatory and Signaling Networks
The example on how galactose consumption was increased upon dele-
tion of negative regulators of the GAL system (23) elucidates how 
release of regulatory control can be important for increasing fluxes or 
redirecting them into other pathways. Reconstruction of regulatory and 
signaling networks therefore offers the opportunity to identify metabolic 
engineering targets. However, unlike metabolic networks, regulatory and 
signaling networks cannot be easily reconstructed from the annotated 
genome. Advances in high-throughput methodologies to identify protein–
protein and protein–DNA interactions has impelled the development of 
models and automated systems to reconstruct signaling cascades and 
regulatory structures than to activate or inhibit transcription. Integration 
of other omics data, together with these structural networks, has contrib-
uted to identify co-regulated modules at different levels of cellular 
organization.

The reconstruction process usually starts by collecting all possible 
information from the literature. Because there are many regulatory 
mechanisms in the cell, reconstruction typically focuses on the 
mechanism(s) of interest. For example, Ideker and co-workers (32) put 
together a model on galactose utilization in S. cerevisiae, based on litera-
ture-derived information. The defined network included one permease 
that transports galactose into the cell, four enzymatic genes converting 
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galactose intracellularly, and four regulatory proteins inhibiting or acti-
vating the transcriptional response of other proteins in the system. Once 
the regulatory model was established, they performed genetic and envi-
ronmental perturbations corresponding to the single deletion of all 
defined genes in the model, both in the presence and absence of galac-
tose, and further measured the global changes at the transcriptome and 
the proteome level for each perturbed strain (changes relative to a refer-
ence strain). Next, mRNA and protein responses were evaluated in the 
context of the model, together with global protein–protein and protein–
DNA information. Based on the observations, new hypotheses were 
generated, tested, and used to improve the regulatory model.

The galactose utilization pathway in S. cerevisiae is a relatively well-
characterized metabolic/regulatory system. However, many signaling 
and regulatory mechanisms cannot be easily reconstructed from litera-
ture because experimental “low-throughput” information is often 
incomplete. Several approaches have been proposed to model signal 
transduction networks and gene-regulatory pathways using large inter-
actome databases that are mainly derived from high-throughput 
studies.

In a later work by Ideker et al. (33), they describe a graph theory–based 
method to discover regulatory and signaling circuits in molecular interac-
tions networks. Here, they represent the global protein–protein and 
protein–DNA interactions network of the yeast S. cerevisiae as a graph 
and score each node (a protein or gene) with the corresponding signi-
ficance of change in gene expression. Next, they apply their algorithm 
to score subnetworks and search for the high-scoring subnetwork. The 
final high-scoring subnetwork corresponds to a module of co-regulated 
genes that significantly change their transcriptional levels in response 
to a perturbation. The propagation effects of the perturbation are there-
fore hypothesized to correspond to physically connected proteins (signal-
ing cascades) and to transcription factors controlling the expression of 
an affected gene. Other methods (34–36) have also been proposed to 
model transcriptional regulation and signal transduction networks.

2.3.3. Understanding Emergent Cellular Properties
In metabolic engineering, each round of improvements/experiments 
should be followed by a thorough analysis, bringing insights into the 
metabolic responses and their molecular bases. Omics quantification has 
contributed to a better understanding of whole cellular properties, and 
the acquired knowledge can be further used to design the next round 
of improvements. Typical analyses include the comparative profiling
of transcriptome, proteome, fluxome, and/or metabolome data between 
a reference and a modified strain(s). Assessment of variation can 
be achieved either by analysis of ratios or by statistical significance tests. 
Integrated analyses, together with genome-scale metabolic networks, 
have yielded additional insights into the metabolic effects of genetic and 
environmental perturbations.

Bro and co-workers compared the genome-wide transcriptional 
responses of a reference strain of S. cerevisiae with the GDH1-deleted
mutant, grown under anaerobic glucose-limited continuous cultures (37). 
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GDH1 encodes a NADPH-dependent glutamate dehydrogenase, which 
is an enzyme that plays an important role in ammonia assimilation and 
utilizes approximately 50% of all the NADPH required for biomass 
synthesis. Previous physiological characterization of the GDH1-deleted
strain showed an altered redox metabolism, resulting in a considerable 
decrease of glycerol production and a slight increase in ethanol produc-
tion (38). Transcriptional analysis was carried out using a statistical test 
to evaluate significance of differential gene expression. To reduce the 
focus of the analysis, only transcriptome levels of genes encoding 
NAD(P)H-dependent enzymes were analyzed, and 13 of these were 
identified as significantly altered. Interestingly, it was found that GND1,
ZWF1, and ALD6, encoding the most important enzymes for regenera-
tion of NADPH, were down-regulated in the mutant, suggesting a pos-
sible common redox-dependent regulation. These findings offer new 
possible targets for future metabolic engineering strategies.

In the aforementioned work, Bro et al. (37) report their challenge in 
defining “what is significant.” Integrated approaches, such as the one 
introduced by Patil and Nielsen (15), offer the opportunity to look at the 
metabolism as a whole and to identify the parts more significantly affected 
in response to a perturbation. In their work, Patil and Nielsen (15) inte-
grate the genome-scale metabolic network with transcriptome data in a 
graph representation, and identify high-scoring metabolic subnetworks 
and reporter metabolites (see section 2.2.1 for a definition). Using this 
approach, analysis of GDH1 gene expression data immediately reveals a 
strong impact in redox-metabolism, with 10 genes encoding enzymes 
catalyzing oxidoreductive reactions popping up in the high-scoring 
metabolic subnetwork. Moreover, reporter metabolites include am-
monia, glucose-6-phosphate, fructose-6-phosphate, and sedoheptulose-7-
phosphate (all intermediates of the pentose phosphate pathways that 
serve as major sources for NADPH production), which is in good agree-
ment with the known effects of Gdh1 in ammonia assimilation and 
NADPH usage. This integrative method allows a look into the metabolic 
effects of a perturbation without considerable a priori knowledge of the 
system. Such a method can also be used in functional genomics, contribut-
ing to the identification of the metabolic role of an unknown enzyme.

2.3.4. Prediction of Metabolic Behavior
Effective design tools of microbial cell factories are the ultimate goal of 
metabolic engineering. Although our understanding of cellular function 
is still far from complete, simplified models able to predict metabolic 
behavior under changing environmental and genetic conditions are 
called for. Genome-scale stoichiometric metabolic models have proven 
to be particularly useful for this purpose. Namely, FBA and related 
approaches have been successfully applied in predicting the lethal effect 
of gene deletions in several microorganisms, including E. coli (39) and S.
cerevisiae (40), and in evaluating the maximum theoretical yield of a 
desired product at a certain growth rate, being a valuable tool in identify-
ing metabolic engineering targets (16,17,41–43).

Omics-derived information can be applied to improve FBA predic-
tions. For example, Åkesson et al. (44) used transcriptome data to iden-
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tify the genes not being expressed under certain conditions, and included 
that information to impose additional on/off constraints into the FBA 
problem. This simple approach improved the FBA prediction signifi -
cantly. Covert et al. have also proposed the introduction of regulatory 
constraints in the form of a Boolean on/off switch (45–47), this method 
defining which enzymes are active/inactive under certain conditions. In 
their studies, they showed that the addition of regulatory constraints 
significantly improves the predictive capacity of models in which regula-
tory effects play a dominant role in the metabolic response.

3. Omics Quantification

Identification and quantification of the cellular inventory are critical 
steps toward deciphering mechanisms that underlie cellular function. 
Numerous techniques that simultaneously detect multiple signals at the 
molecular level have been developed and continue to emerge. Ulti-
mately, the objective of these strategies is to capture differences in pro-
files between different systems, cells, organisms, communities, etc., to 
crack the code underpinning regulatory schemes that control biological 
function. There are numerous analytical methods for systems-level cel-
lular analysis. Here, we underscore key developments involved in char-
acterizing mRNA, proteins, metabolites, and fluxes (see also Table 1). 
Many powerful techniques, which we do not report, are also being devel-
oped for the analysis of genomes, protein–protein interactions, protein–
DNA interactions, and protein location.

Genome-wide transcriptional analysis is the most mature omic analyti-
cal method. The basic principle behind DNA microarray technology is 
based on the hybridization of labeled RNA or DNA prepared from 
extracted cellular mRNA to highly ordered nucleotide sequences 
attached to a solid matrix (48–50). Although many array technologies 
exist, spotted DNA microarrays and high-density oligonucleotide micro-
arrays (commercially available from AffymetrixTM) are the most widely 
used (51,52). Despite similar statistical treatments to classify significantly
changed genes, these approaches fundamentally differ in the experimen-
tal setup. Namely, in spotted arrays, the two samples under comparison 
are labeled with different fluorescent dyes and co-hybridized on the 
same DNA microarray to obtain relative abundances of specific gene 
products. High-density oligonucleotide microarrays measure absolute 
abundance levels because each sample for comparison is labeled with 
the same dye and hybridized individually.

Techniques for quantification of cell-wide protein content have 
emerged as complementary tools to transcriptome analysis (53). Relative 
to genome-wide transcriptional profiling, proteome elucidation is based 
on the analysis of biopolymers made up of a larger library of molecules. 
Because of the increase in building block complexity (proteins being 
comprised of 20 amino acids, whereas mRNA has 4 different nucleo-
tides), methods to probe the proteome are slightly less established than 
DNA microarrays. Moreover, protein coverage is an issue. Four primary 
methods have been used to globally examine proteome status. The 
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Table 1. Summary of Pros and Cons of Common Omics Methods and Technologies.
Method Advantages Disadvantages

Transcriptome
Spotted microarrays —Minimizes problems —Measures relative

with noise and  abundances
background —Comparison between

—Prepared in-house  arrays/experiments is
complicated

High density oligonucleotide —Measures absolute —Concerns about
microarrays  abundances  background

—Manufactured  adjustments and
commercially  normalization

—Standardized probes
and protocols

Proteome —Well suited to large- —Amount of material
2DE-MS  scale separation and  needed

identification of —Reproducibility
numerous proteins —Limited sensitivity
in one sample —Excludes many large,

—Comparison of protein  hydrophobic and basic
quantity from 2–3 gels  proteins
is possible with new
staining techniques

Protein arrays —High specificity —Nonmature technology
—Currently beneficial —Currently limited by

for analysis of  proteome coverage
specific classes of
proteins

—Enormous potential
ICAT —Good sensitivity —Limited to a binary set

—Relative protein  of reactions
abundances for 2 —Limited to proteins
samples are  containing cysteine
determined in one —Not amenable to 
experiment  post-translationally

modified proteins
iTRAQ —Good sensitivity and —Samples must be

consistency  prepared according to
—Relative protein  strict guidelines

abundances of up to —MS time is increased
4 samples are  due to increased 
determined in one  number of peptides
experiment

—Post-translational
modifications can be
identified

—Higher confidence
identification than
ICAT
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workhorse of this analysis has been separating and quantifying proteins 
by two-dimensional electrophoresis (2DE) and identifying them by mass 
spectrometry (MS) (54). More recently, protein arrays, similar in concept 
to DNA arrays, but based on highly specific protein interactions, are also 
being developed (55). However, the most rapid advances in the pro-
teomic field have originated in techniques that make use of labeling 
proteins with either isotope or isobaric tags (56–59). These elegant strate-
gies use detection of peptide fragments by MS for the identification of 

Table 1. Continued
Method Advantages Disadvantages

Metabolome (Adapted from Villas-Boas et al., 2005 (59))
GC-MS —High separation —Unable to analyze

  efficiency  thermo-labile
—Easy interface  metabolites

between GC and MS —Requires
—Simultaneously  derivatization of

resolves different  nonvolatile metabolites
classes of metabolites —Difficult to identify

—Reproducible  unknown compounds
after derivatization

LC-MS —High sensitivity —Matrix effects
—Enables analysis of —Restrictions on LC

thermo-labile  eluents due to interface
metabolites  issues from LC to MS

—Average to high —De-salting may be
chromatographic  necessary
resolution

CE-MS —Uses small volumes —Difficult to interface
—High resolution  CE with MS
—Fast and efficient —Complex methodology

separation of charged  and quantification
and uncharged —Least developed 
species

MS —Allows for rapid —Identification of
screening of  metabolites generally
metabolites (2–3 min  requires tandem MS
per sample) —Matrix effects

—High sensitivity —Requires elegant data
—Negligible sample  deconvolution methods

clean-up for profiling
Fluxome —Requires minimal —Higher cost and lower

NMR analysis  sample preparation  throughput relative to
—High reproducibility  MS analysis
—Nondestructive to the —Requires complicated

sample  data deconvolution and
statistical fitting
procedures

MS analysis —High sensitivity —Requires complicated
—Rapid throughput  data deconvolution 
—More resolvable  and statistical fitting

metabolites  procedures
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relative protein abundances and comparison between samples. The two 
most popular methods are the “isotope/coded affinity tag” (ICAT) strat-
egy (57) and the “isobaric tags for relative and abundance quantification”
(iTRAQ) method (59). Although both approaches have advantages, 
it has been argued that the iTRAQ method offers more comprehensive 
proteome coverage because of its labeling scheme and ability to analyze 
up to 4 samples simultaneously.

Although transcriptome and proteome analysis have been developed 
most extensively over the past decade, the tools necessary for quantita-
tive high-throughput metabolome analysis are just now emerging. As the 
intermediates of biochemical reactions, metabolites represent the ampli-
fication and integration of signals from upstream molecular players 
within the cell (i.e., mRNAs and proteins). The highly diverse chemical 
nature of metabolite structures makes quantifying all metabolites of the 
cellular system impossible in practice. However, strategies attempting to 
cover a wide range of metabolites in a single step continue to evolve. 
Typical quantitative approaches couple an analytical separation tech-
nique (e.g., capillary electrophoresis [CE], liquid chromatography [LC], 
and gas chromatography [GC]) with MS or NMR based detection (60–
62). GC-MS is the most common method for global metabolite quantifi -
cation. In one recent illustration, GC-MS was applied for the integrated 
analysis of approximately 80 metabolites (intra- and extracellular) 
involved in amino acid and central carbon metabolism from S. cerevisiae
(63). Because most naturally occurring metabolites are not volatile, GC-
MS is limited by the requirement for sample volatility. Efficient derivatiza-
tion methods are available, but alternative approaches for quantitative 
profiling also enable analysis of a large number of metabolites. To illus-
trate, LC-MS has been shown to uniquely combine sensitivity and 
specificity to study the intermediates of the glycolytic pathway (64). In 
addition to dynamic developments in refined analytical techniques and 
MS sensitivity, advances in internal standardization, one of the main 
challenges in quantitative metabolome analysis, are also paving the way 
for more robust measurements. Mashego and co-workers have devel-
oped an approach that uses extracts from 13C-saturated microbial cultiva-
tions to provide an internal standard for all intracellular metabolites to 
be quantified (65). This work has created a platform independent of ion 
suppression effects and holds significant promise for unifying quantita-
tive metabolome analysis. Although not the focus here, qualitative 
scanning of metabolites is also an integral part of metabolome analysis 
(60,61).

Although cell-wide quantitative measurements of mRNAs, proteins, 
and metabolites yield insights to the molecular status of the cell, experi-
mentally determining the flow of material through metabolic networks 
provides detailed information on the actual functional operations that 
determine cellular phenotype. Quantitative metabolic flux analysis, 
fluxomics, relies on the use of 13C-labeled substrates followed by deter-
mination of characteristic patterning found in intracellular metabolites 
(11,66–68). Both proteinogenic amino acids and direct metabolites have 
been used for determination of labeling patterns (68). When possible, 
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direct measurements of metabolites are preferred, as they enable direct 
monitoring of flux distributions and they are able to detail transient 
phenomena (69), but it is important to consider the rapid dynamics of 
exchange between the metabolites and amino acids incorporated into 
cellular proteins (70). Typically, NMR or MS analyses have been utilized 
with mathematical data integration methods to identify the metabolic 
flow of carbon through the cellular network; however, Sauer has sug-
gested that because of its sensitivity and rapid pace, MS sample analysis 
is poised to have the greatest impact in high-throughput flux analysis 
(68,71). To this end, several reports have now demonstrated the power 
of MS analysis in the large-scale determination of in vivo fluxes
(69,71–73).

4. Models for Metabolic Engineering in the Systems 
Biology Era

4.1. Making Sense of the Omics

In the previous sections, we described some of the omics tools and exem-
plified how omics data are being used in metabolic engineering, within 
a systems biology framework. Several methods were referred to for data 
analysis, interpretation of observations, and quantitative prediction of 
cellular behavior. These methods include models for comparative analy-
sis of omics profiling (e.g., statistical tests and reduction of dimensional-
ity methods), models for integrative analysis (e.g., graph theory–based 
models), and predictive models (e.g., based on linear and quadratic opti-
mizations). Selection of the appropriate type of model(s) to deal with 
a given problem plays an important role in extraction of knowledge. 
Furthermore, experimental design should anticipate the focal point of 
data analysis and clearly define the biological question/hypothesis, while 
assuring statistical treatment of the results.

Analysis of omics data represents an important step toward under-
standing of cellular response. Analysis typically starts through assess-
ment of statistical significance, followed by methods to group genomic 
features by profiles or co-regulation patterns. Interpretation of results 
coming from these methods is often a challenge by itself, therefore 
being useful to focus on a particular biological question. An overview 
on classical and integrative methods for data analysis is given in 
section 4.2.

Predictive models are an attempt to put together (the increasing 
number of) biological insights into a coherent whole (74). Stoichiometric 
metabolic models, derived from fundamental principles of conservation 
of mass and energy, have been particularly successful in exploring the 
relationship between genotype and phenotype and in predicting product 
yields and growth rates under changing environmental and genetic con-
ditions, at steady state. Omics data have brought increasing predictive 
capabilities to these types of models. Section 4.3 deals with the predictive 
capabilities of stoichiometric metabolic models.
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4.2. Data Analysis

4.2.1. Classical Methods
Traditionally, analysis of quantified molecular components is made by 
comparing their relative occurrence (e.g., fold change) between two or 
more conditions. However, when dealing with high-throughput technolo-
gies, technical noise is an important source of variation (75). Therefore, 
methods for statistical assessment of variance are often used to identify 
statistically significant biological changes among conditions.

Omics analysis generates vast amounts of data. For example, genome-
wide gene expression data generates tens of thousands of data, with at 
least as many variables as measured transcript abundances. This high-
dimensionality of omics data makes it difficult to visualize relationships 
between variables and to group experiments by similarity of profiles.
Methods such as clustering (76), PCA (77), independent component 
analysis (78), and singular value decomposition (79) have been applied 
to reduce dimensionality of omics data, facilitating its visualization, 
allowing an overall characterization of the structure of the data and 
contributing to the separation of biologically meaningful information 
from noise.

4.2.1.1. Statistical Significance Analysis: When quantifying a few molecu-
lar components such as mRNA or protein levels using classic Southern 
or Western blots, analysis of results typically focuses on how the fold 
ratio changes. The introduction of high-throughput arrays for genome-
wide measurements of mRNA levels in the late 1990s brought new 
dimensions to data analysis. Initially, because of high costs, only one chip 
was being used per experiment and conclusions were made based on fold 
changes (49,80,81). However, further studies have shown that fold 
changes are not always an indicator of significance because there is an 
intrinsic biological variability (even in biological replicates) and also 
because technical reproducibility of microarrays is not very strong (75). 
Therefore, an alternative way to assess biological significance of differ-
ential expression is to run replicate experiments (biological replicates) 
and to apply a statistical test to identify significant changes (75,82). For 
statistical reasons, these replicates should be in a minimum of three, 
although it has been noticed that the number of false negatives among 
the significant changing genes decreases when the number of biological 
replicates increases (83,84).

The main idea behind most of the statistical significance tests is to 
evaluate whether two different groups of numbers are similar. The most 
common test for a pair-wise comparison is the Student’s t-test, which 
assumes that each set of numbers follows a normal distribution and tests 
how similar the two distributions are, e.g., if they have the same mean. 
Other methods have been developed specifically for microarray data to 
improve the assessment of significance, including significance analysis of 
microarrays (85) and variability and error assessment (86). When com-
paring more than two datasets simultaneously, statistical tests like analy-
sis of variance or multivariate analysis of variance are often used. In 
general, statistical significance tests assign a probability value (p-value)
to each feature (gene, protein, metabolite, etc.) under analysis. The 
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p-value indicates the likelihood that the observed differential expression 
occurs by chance, i.e., the lower the p-value, the more significant the 
change.

After applying a statistical test and generating a list of p-values for all 
features under analysis, it is necessary to define “what is significant.” This 
can be done by establishing a cut-off and defining that all cases with a 
p-value below the cut-off should be called “significant.” In engineering 
sciences, a p-value cut-off of 0.05 (95% confidence) is usually accepted 
as a threshold for significance. However, it is often argued that when 
testing for thousands of features the threshold for significance has to be 
chosen so that the probability of having any false-positive among all 
features tested should be ≤0.05 (87), and this calls for the use of methods 
that account for multiple testing, such as the Bonferroni correction or 
the Benjamini–Hochberg correction (88). However, these corrections 
produce very strict cut-offs, and may lead to the exclusion of many true 
positives. Storey and Tibshirani (87) reported a good alternative method 
for choosing a cut-off based on false discovery rate, by defining a measure 
of statistical significance called q-value. Their approach leads to a less 
stringent cut-off, while keeping a good balance between false-positives 
and false-negatives.

4.2.1.2. PCA: Principal component analysis is a method for reduction of 
dimensionality that allows the visualization of high-dimensional data in 
a low-dimensional space, projecting the omics data onto a plane in such 
a way that similar variables (e.g., mRNA transcripts) or experiments will 
be located close to each other. PCA decomposes the original space in a 
low-dimensional space of dimension n, where n is the number of princi-
pal components. PCA identifies the direction in space that captures most 
of the variance, and this direction corresponds to the first principal com-
ponent (PC1). The second principal component (PC2) is determined as 
being a vector orthogonal to PC1 that captures most of the remaining 
variance (and this process can be continued to find other principal com-
ponents). Data can then be projected onto this low-dimensional space, 
whose axes are the principal components. If PC1 and PC2 retain most 
of the variance of the data, it is possible to have a good 2D visualization 
of the relationships between variables and experiments.

When performing PCA, it may be convenient to mean-center and scale 
the data; i.e., transform each variable vector so it has mean 0 and stan-
dard deviation 1. Moreover, it may be convenient to perform PCA only 
on significant changing genes/proteins/metabolites. Although PCA 
decomposition “filters” for features with high variance, it is known that 
this variance can be caused by either technical noise or biological changes. 
Therefore, nonbiological variance should, at best, be subtracted before 
PCA is performed.

A PCA bi-plot depicts both loadings and scorings, that is, the projec-
tion of both variables and samples in the principal component space. 
Loadings contain information on how variables relate to each other, 
whereas scorings refer to how samples are related. Analysis of loadings 
tells us how the variance of certain features (e.g., a gene) is explained 
by that principal component. Loadings weight should be read in the 
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principal component axis, and genes with high absolute values are the 
ones that contribute more for that component. The distribution of the 
scorings tells us how the samples can be explained by the loadings. For 
example, a sample standing in the upper right quadrant of a bi-plot is 
positively influenced by the variables also standing in the upper right 
quadrant, and is negatively influenced by variables in the lower left 
quadrant.

4.2.1.3. Clustering: Clustering was one of the first methods proposed for 
analysis of transcriptome data, and it is probably the most wide spread 
method for grouping profiles of omics data. In the context of gene 
expression data, the basic idea consists in grouping genes based on their 
similarity profile (76). Genes sharing a common profile throughout a 
series of experiments will cluster together, and can be further analyzed 
as having a common profile. Therefore, clustering is also referred to as a 
method for reduction of dimensionality.

An important concept when dealing with clustering is the notion of 
“similarity of genes.” Different metrics can be used to assess gene simil-
arity, based on either distances or correlation factors. Metrics frequently 
used are Euclidian distance and the Pearson correlation. The latter is 
often preferred because it measures the similarity of the directions of 
two gene expression vectors, and it is insensitive to the amplitude. 
More considerations of metrics selection can be found in other studies 
(76,89,90). Once the appropriate metric is selected, a distance matrix can 
be calculated for all pair-wise distances among all genes. Genes can then 
be joined based on similarity using one of the different clustering methods, 
such as hierarchical clustering, K-means clustering, or self-organized maps 
(see Jewett et al. [29] and Kaminski and Friedman [91] for reviews).

Once genes are grouped into clusters, cluster analysis is often based 
on the concept of guilt by association, suggesting that genes belonging 
to the same cluster are involved in related processes. This has been used 
to assign a function to genes with unknown function (92), to search for 
common binding motifs in the upstream region of co-regulated genes 
(93,94) or to analyze the expression profile of a particular biological 
process, such as a pathway (95,96).

4.2.2. Integrative Methods
In our quest to answer questions like “how is control of fluxes exerted 
at different levels of cellular regulation?” we need to understand the 
principles and architecture of the regulatory machinery at its different 
levels. Because transcription is hierarchically the “first layer” of cellular 
regulation, and transcriptome data is currently the most widely quanti-
fied omics, much effort has been put into methods for dissecting the 
transcriptional regulatory machinery. In particular, methods combining 
transcriptome data with known biological interactions have brought new 
insights into cellular transcriptional programs.

Classic methods, such as clustering and PCA are data driven, 
i.e., they attempt to search for hidden correlations in the data by using 
data alone. The main hypothesis behind the interpretation of results 
derived from these methods is that co-regulated genes show similar 
expression patterns in the underlying experiment(s). However, these 
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methods implicitly assume that there may be an all–all interaction 
amongst the genes being analyzed. This high degree of freedom makes 
data-driven methods sensitive to noise in the data. Consequently, rela-
tively weak, but biologically significant, correlations may be overshad-
owed by stronger, but biologically insignificant, correlations. One way to 
overcome this issue is to reduce the degree of freedom during data 
analysis by integrating omics data with known biological interactions 
occurring in the cell, such as protein–protein interaction networks or 
metabolic networks. Several integrative methods have been reported and 
applied with different purposes.

Several studies have focused on elucidating local network architecture 
and functionality by showing that mRNA transcriptional patterns of 
genes belonging to a group of interacting genes (or gene products) are 
significantly more similar than in a random set of genes. This correlation 
was shown to exist for genes that belong to certain metabolic pathways 
(96–98), for genes belonging to a particular functional class as defined
by gene ontology (99), and for genes belonging to a cluster of interacting 
proteins (100). For example, Ihmels et al. (96) combined gene expression 
data with metabolic pathway topology of S. cerevisiae to analyze how the 
coordinated expression of enzymes shapes the metabolic network of 
yeast. They observed that genes belonging to a particular metabolic 
pathway show higher coexpression than a random control, and further 
conclude that transcriptional regulation biases metabolic flow toward 
linear pathways and that isozymes are often regulated separately, thus 
preventing cross-talk between pathways. Moreover, from their integra-
tive analysis, they also observed that transcriptional regulation of meta-
bolic pathways obeys a hierarchical regulation.

Ideker et al. (33) introduced an integrative approach to search for 
highly transcriptionally co-regulated subnetworks in molecular inter-
action networks, aiming to uncover modules of cellular transcriptional 
regulation in response to a genetic or environmental perturbation. As 
described in section 2.3.2, they combined the topology of protein–protein 
and protein–DNA interaction networks with gene expression data to 
discover regulatory and signaling circuits. They represented the network 
as a graph and applied graph theory and optimization algorithms to 
search for high-scoring subnetworks, which correspond to groups of 
interacting proteins or genes that change their transcriptional response 
the most. Remarkably, these subnetworks may contain genes without 
large expression changes, but are still required to connect to other dif-
ferentially expressed genes. This may be the case of regulatory proteins 
that are constitutively expressed, being mainly regulated at the posttran-
scriptional level, but playing a key role in the transcriptional response of 
other genes.

A similar graph-theory approach was followed by Patil and Nielsen 
(15) to uncover transcriptional regulation of metabolism through the 
integration of gene expression data within the metabolic network. In this 
case, the metabolic network was represented as a graph where enzymes 
sharing common metabolites are connected. The resulting high-scoring 
subnetwork corresponds to the most highly correlated (and connected) 
enzymes and reflects the propagation effects of a genetic/environmental 
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perturbation on metabolism, at the transcriptional level. Notably, the 
reported method describes an interesting attempt at looking into the 
metabolic network as a whole, highly connected structure (14,101), 
instead of looking into “textbook-defined” pathways, which are small and 
isolated entities. Another novelty of the work by Patil and Nielsen (15) 
lies in the definition and identification of “reporter metabolites,” which 
are metabolites that might be functionally related to the perturbation 
factor (gene deletion or change in environmental condition). This repre-
sents one of the first attempts to infer the global role of a metabolite 
based on mRNA expression and metabolic network topology without 
direct measurement of metabolite concentration.

Liao and co-workers introduced network component analysis (NCA), 
a method for reduction of dimensionality that incorporates network con-
nectivity information and that can be used to reconstruct regulatory 
signals (102,103). In their work, they show that NCA can be applied to 
gene expression data to determine transcription factor activities given 
the mRNA transcript levels and the transcription factor’s connectivity 
matrix (matrix with 1s if a transcription factor binds a certain gene; with 
0s otherwise). NCA is a powerful data decomposition method that may 
be further used with other types of connectivity information derived, for 
instance, from protein–protein or metabolic networks.

4.3. Predictive Models

A wide range of models is used for the simulation and prediction of cel-
lular function. Many models are based on the description of the kinetics 
of several individual processes, e.g., enzyme-catalyzed reactions or 
protein–protein interactions, and integration of the kinetics expression 
into dynamic mass balances. This results in a set of coupled differential 
equations that can be used to simulate operation of the system at both 
steady state and dynamic conditions. Because of the requirement for a 
large number of fitted parameters, most of these models are currently 
limited to describe only relatively small systems, i.e., a given signal trans-
duction pathway or a dedicated metabolic pathway (104–106).

As an alternative to kinetic models, stoichiometric models have proven 
to have good predictive capabilities for assessment of gene lethality and 
essentiality during growth under different carbon sources (39,40,72,107), 
for determination of product yields (41,42,108), and for analysis of flexi-
bility and robustness of the metabolic network (12,18). This makes them 
valuable tools to evaluate whole metabolic function and a major aid for 
identification of metabolic engineering targets for obtaining a desirable 
phenotype. Furthermore, these models are characterized by having only 
few fitted parameters; hence, it is possible to extend the concept to 
a genome scale (109).

Flux balance analysis has been extensively used to explore the capa-
bilities of large metabolic networks and for in silico prediction of fluxes
in metabolic mutants (2,110,111). FBA is a linear programming–posed 
problem where constraints are defined by stoichiometry (derived from 
mass balances around each metabolite) and by physiological/thermody-
namic limitations, and the objective function is defined as the optimiza-
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tion of a certain flux of interest, e.g., the flux toward formation of biomass. 
Maximization of biomass production has been shown to allow descrip-
tion of overall metabolic behavior in several cases, probably because 
most cells have evolved, under laboratory conditions, toward the maxi-
mization of their growth performance (16). More recently, another 
approach has been proposed for dealing with the effect of gene deletions 
in the prediction of flux distributions, based on quadratic programming 
(112). The so-called minimization of metabolic adjustment (MOMA) 
relies on the assumption that optimal growth may initially not be true 
for mutants generated artificially in the laboratory, as those mutants 
usually have not yet undergone evolution toward optimal growth.

Several methods to improve predictions from FBA and MOMA have 
been reported. Namely, the use of constraints that account for metabolic 
regulation have been shown to improve the predictive capability of 
models whenever regulation plays an important role (46,113). In particu-
lar, the availability of genome-wide gene expression data has offered the 
opportunity to integrate transcriptional level regulation into these models 
(44,47), as described in section 2.3.4. A significant improvement for the 
design of knockout strategies for metabolic engineering was the intro-
duction of OptKnock, which is a bilevel optimization algorithm coupling 
biomass formation with chemical production (41). Later, the same 
authors introduced OptStrain (43), which is an extension of OptKnock 
that allows the addition of heterologous reactions, opening opportunities 
for the design of hosts for production of heterologous products. A fun-
damental problem with OptKnock (and its extension) is that it is com-
putationally demanding if several different mutations are allowed. Patil 
and co-workers found a solution to this problem by developing a genetic 
algorithm that allows for rapid identification of a relatively large number 
of mutations that results in a desirable phenotype (114).

Another mathematical framework that holds interesting predictive 
capabilities is elementary flux mode (EFM) analysis (115). Elementary 
flux modes are defined as the smallest subnetworks enabling the meta-
bolic system to operate at steady state (116), i.e., any nondecomposable 
routes connecting two defined metabolites in the network. Like FBA, 
EFM analysis has been applied to the quantification of maximal conver-
sion yields and to the determination of gene essentiality (12). Further-
more, Stelling et al. (12) have used EFM analysis to show that metabolic 
structure by itself can be used to derive regulation. In their work, they 
used a stoichiometric metabolic model of the central carbon metabolism 
of E. coli, and, by introducing a parameter called “control-effective flux,”
they successfully predicted the expression ratios of many genes involved 
in central carbon metabolism. Similar results have been reported for the 
metabolic network of S. cerevisiae (18).

5. Conclusions

Omics technologies have generated vast amounts of system-level data. 
Understanding the state, including location, of all genes, mRNAs, pro-
teins, and metabolites does not, however, explicitly reveal phenotype, and 
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it also does not enable trivial prediction of relations between genotype 
and phenotype. It is necessary to have quantitative information mapping 
these molecules under various perturbations to comprehend the orches-
trated web of complex interactions that propagate from the genetic 
architecture through the metabolic network.

In this chapter, we illustrated how systems biology approaches are 
being used in metabolic engineering to relate genotype with phenotype. 
Several analysis tools and predictive models were described for explor-
ing properties and capabilities of microbial systems, uncovering hidden 
regulatory structures and designing new strategies to redirect fluxes.
Because analytical techniques for quantification of mRNA levels are the 
most widespread and well-established genome-wide high-throughput 
technologies, particular focus has been given to transcriptome data anal-
ysis and its application in designing enhanced microbial cell factories. 
Nevertheless, transcriptional data by itself has a limited capability in 
predicting phenotype, so identification and quantification of other molec-
ular components and integration of different molecular levels into 
common models will help to reveal the different levels of cellular regula-
tion and flux control.
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Handling and Interpreting 

Gene Groups
Nils Blüthgen, Szymon M. Kielbasa, Dieter Beule

Summary

Systems biologists often have to deal with large gene groups obtained 
from high-throughput experiments, genome-wide predictions, and litera-
ture searches. Handling and functional interpretation of these gene 
groups is rather challenging. Problems arise from redundancies in data-
bases, where a gene is given several names or identifiers, and from falsely 
assigned genes in the list. Moreover, genes in gene groups obtained by 
different methods are often represented by different types of identifiers,
or are even genes from other model organisms. Thus, research in systems 
biology requires software tools that help to handle and interpret gene 
groups.

This chapter will review tools to store and compare gene groups rep-
resented by various identifiers. We introduce software that uses Gene 
Ontology (GO) annotations to infer biological processes associated with 
the gene groups. Additionally, we review approaches to further analyze 
gene groups regarding their transcriptional regulation by retrieving and 
analyzing their putative promoter regions.

Key Words: Gene groups; homology; promoter analysis; GO; redun-
dancy; functional interpretation.

1. Introduction

Many modern experimental techniques in molecular biology produce 
large gene lists. Microarray studies, for example, result in groups of inter-
esting genes, like genes that are differentially expressed in different 
tissues or in normal versus transformed cells. Yeast two-hybrid screens 
provide groups of hundreds of interacting proteins. Genome-wide screens 
for transcription factor binding sites yield lists of genes potentially regu-
lated by the transcription factor under study.

Thus, when analyzing and designing experiments and building models, 
systems biologists often have to deal with large gene groups. They face 
the problem of handling, comparing, and analyzing gene lists from diverse 

69

CIT_Ch04.indd 69CIT_Ch04.indd   69 5/22/2007 3:33:17 PM5/22/2007   3:33:17 PM



70 Blüthgen, Kielbasa, and Beule

data sources, like databases, previous experiments, and literature searches. 
One hard nut to crack is that each gene can have several names, and 
several types of accession numbers can be assigned to one gene. Espe-
cially if one needs to handle large gene lists, comparing and analyzing 
these lists must be done in an automatic way.

In this chapter, several types of accession numbers are briefly reviewed. 
Subsequently, algorithms to convert accession numbers and to compare 
gene groups are introduced, with a focus on the Web service HomGL. 
Functional analysis and interpretation of these gene groups is another 
difficult task. Instead of looking at gene groups and finding the most 
familiar gene names, a more unbiased automation of this task is facili-
tated by the systematic annotation provided by the GO. This chapter 
shall discuss tools and statistical issues of doing so. Finally, the extrac-
tion and analysis of sequence information for gene groups will be 
discussed.

2. Accession Numbers

Individual researchers may submit sequences of (for example) sequenced 
genes, expressed sequence tags (EST), or even sequences of entire 
genomes to GenBank (1). To each submitted sequence, a unique identi-
fier, the so-called accession number, is assigned. Under this accession 
number, one can access the sequence and its annotation, for example, 
via Entrez (2). Other databases, like SwissProt, follow a similar proce-
dure (3). Currently, GenBank is growing exponentially. As of August 
2005, GenBank contained more than 50 billion nucleotide bases from 
47 million individual sequences for more than 165,000 named organ-
isms (1).

Given a GenBank accession number, researchers can easily access the 
sequence information and some annotation at the National Center for 
Biotechnology Information (NCBI) Website (http://www.ncbi.nlm.nih.
gov/). However, full-length mRNA sequences of a gene might by stored 
under several different accession numbers, as it might have been sub-
mitted by different groups of researchers. Additionally, several subse-
quences from EST projects might be stored in GenBank. Also, transcripts 
corresponding to different splice variants or various transcription start 
sites are stored under different accession numbers. Thus, the multiplicity 
of sequences in the public databases for genes, transcripts, and proteins 
make it challenging for researchers to compare two lists of GenBank 
accession numbers, even though each identifier points uniquely to one 
entry in GenBank.

UniGene is one of the first approaches to address this problem (2). 
UniGene is a system for automatic partitioning of GenBank sequences, 
including ESTs, into a nonredundant set of gene-oriented clusters. For 
each organism in GenBank with sufficient sequences (currently 16 
animals and 13 plants) UniGene clusters are created. UniGene clusters 
should represent a unique gene. In the human UniGene November 2005 
release (build 187), over 5 million human ESTs in GenBank have been 
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reduced 100-fold in number to 54,576 sequence clusters. UniGene has 
been used extensively as unique sequences for microarrays. UniGene 
databases are updated weekly with new EST sequences, and bimonthly 
with newly characterized sequences.

However, automatic clustering does not guarantee that each gene 
becomes represented by only a single cluster. Thus, in each new UniGene 
build, clusters may split or join to form new clusters when new sequence 
information is provided. Therefore, the cluster accession numbers are 
subject to change, and a gene might be referenced by different cluster 
numbers in different versions of UniGene (Figures 1 and 2).

Approaches overcoming this problem include RefSeq and LocusLink, 
and their successor Entrez Gene (4). They are manually curated sequence 
collections that use whole-genome information to align and cluster 
sequences based on their genomic locus. Entrez Gene is constructed 
such that the identifiers are stable. That is, once an identifier is assigned 
to a gene, it will be identified by the same identifier in future data-
base releases. The relations between the databases are exemplified in 
Figure 3.

Cluster 2Cluster 1 Cluster 3

UniGene build X UniGene build Y

Figure 1. UniGene clusters are not stable. If a new sequence enters GenBank, 
UniGene clusters may join. Here, clusters 1 and 2 join and become cluster 3 in 
the next release, as the new (dashed) sequence joins the two clusters.

AGGAATCTGTTAAAAAG

AATCCAAAATCAAAGAAC
GAGGGATCCTAAACCATT

ATGTAAAACCAATATACA

GTTCCAAAAGCTGACTGG
GTCTTTTGAGGTTCCCAA

AATGTTTAAAACATGTCC

>NM_000668 epd_pos:−39..8

Extracting
coding regions

UTR’s
Extracting

Finding homologues
and mapping to

UniGene identifiers.
Joining results.

NM_000668 NM_002026
AF004877 NM_004502

Exp. B, human

Exp. A, rat
AF081366
NM_019143

Exp. C, mouse
X06762
K01832

USER TEXT INPUT MAPPING and COMPARISON FURTHER OPTIONS

NM_000668
AF081366

NM_019143

NM_004502
AF004877
NM_002026

X06762
K01832

Exp. A
rathuman

UniGene
human
Exp. B

mouse
Exp. C

Hs.4
Hs.463
Hs.819
Hs.179573
Hs.287820

Figure 2. Example of the usage of HomGL to compare three different accession 
numbers. Assume that an experiment A with rat cell lines, experiment B with 
human cell lines, and experiment C with mice generated three lists of interesting 
genes. These lists of genes represented by different accession numbers can be 
uploaded to HomGL. All accession numbers are matched to the corresponding 
UniGene cluster numbers of their organism. Then, using HomoloGene, these 
UniGene clusters are mapped to human UniGene clusters, after which the groups 
can be compared. Furthermore, HomGL allows one to download the sequences 
for the genes by linking to EnsEMBL and GO.
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3. Handling and Comparing Gene Groups

To compare gene groups from different sources, one needs to map the 
genes to one nonredundant set of identifiers, where each identifier points 
to one gene. Entrez Gene ID is getting closer to become such an identi-
fier, and it allows nearly complete coverage of the genome (e.g., with 
32,853 identifiers). However, most current microarrays are built upon 
UniGene clusters (for example, the Affymetrix U chips), such that 
UniGene is still the choice for comparing chips. Nevertheless, UniGene 
identifiers from different UniGene builds (i.e., versions) do not allow 
comparison, as UniGene identifiers are not stable (see previous section). 
Therefore, a possible strategy to compare gene groups would be to rep-
resent each gene by a stable GenBank or chip-specific identifier, and 
then link these identifiers to one (preferably recent) build of UniGene, 
and compare these UniGene identifiers. Doing this manually is rather 
time-consuming, but there are tools to help facilitate this task (Table 1). 
In the following sections, we introduce HomGL, a Web-based tool devel-
oped by the authors (5).

Human

Mouse

GeneID
MAPK3

5595

UniGene
Hs.861

RefSeq
NM_002746

SwissProt
P27361

...

GenBank ESTs
BG392280
BM548079
BI916302

...

GenBank mRNAs
M84490

BX537897
...

UniGene
Mm.8385

HomoloGene

GenBank ESTs
BQ946638
BF579077
BF579705

...

GenBank mRNAs
X64605

AK178779
...

RefSeq
NM_011952

SwissProt
Q63844

...

GeneID
MAPK3
26417

Figure 3. Relations between databases and accession numbers in HomGL.

Table 1. Tools to convert accession numbers.
Application Type of identifier

HomGL1 Human, mouse, and rat identifier
Resourcerer2 Human, mouse, and rat microarray identifier (e.g., from 

Research Genetics, Operon, Affymetrix, RZPD)
KARMA3 Several array platforms, multiple organisms
ProbematchDB4 Match two human/mouse/rat microarrays
1 http://homgl.gene-groups.net/
2 http://www.tigr.org/tigr-scripts/magic/r1.pl
3 http://biryani.med.yale.edu/karma/cgi-bin/mysql/karma.pl
4 http://brainarray.mhri.med.umich.edu/brainarray/
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HomGL uses UniGene cluster numbers as a common nonredundant 
identifier. It provides mapping for GenBank, SwissProt, RefSeq, 
LocusLink/GeneID, and Affymetrix probe set identifiers to UniGene 
cluster numbers for human, mouse, and rat sequences (Figure 3). Addi-
tionally, it utilizes HomoloGene, which is a database of homologous 
genes, to map between UniGene clusters to homologous genes in differ-
ent organisms. This way, gene groups resulting from experiments per-
formed in different organisms may be compared. HomGL provides a 
user interface to facilitate the upload, storage, mapping, and comparison 
of gene groups. It can be accessed via http://homgl.gene-groups.net/ or 
installed locally. In brief, HomGL imports diverse flat-files from data-
bases like UniGene, SwissProt, GenBank, and HomoloGene and extracts 
accession number/UniGene cluster number pairs.

To illustrate the use of HomGL, we analyze gene groups of platelet-
derived growth factor (PDGF)-induced genes from a study by Tullai 
et al. (6). Here, we started with 79 identifiers of probes that showed 
induction after treatment with the growth factor PDGF. These identifiers
were uploaded to HomGL. They matched with 59 unique UniGene 
identifier (Figure 4 for a screenshot and part of the list of identifiers).
We find that not 79, but 59, genes are induced, and HomGL helps to 
identify these redundancies in the database.

HomGL makes use of the homology database HomoloGene, which is 
available from NCBI (2). HomoloGene is a database of both curated 
and calculated gene orthologs and homologues, and it covers 21 

Figure 4. A HomGL screenshot, where accession numbers from an experiment 
performed in human cell lines are mapped to mouse UniGene cluster numbers.
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organisms. Curated orthologs include gene pairs from the Mouse Genome 
Database, at The Jackson Laboratory, and from published reports. Com-
puted homologies, which are considered putative, are identified by 
BLAST nucleotide sequence comparisons between all UniGene clusters 
for each pair of organisms. HomGL imports this database and constructs 
a map between UniGene cluster numbers of human, mouse, and rat 
clusters. This way, for example, 15,622 human and mouse UniGene clus-
ters can be mapped as homologues (HomGL release August 2005). By 
use of this mapping between homologous UniGene clusters, the 59 genes 
discussed above can be mapped to 56 unique mouse UniGene identifiers,
which facilitates comparison with other experiments performed in mice, 
or to design a customized chip for immediate-early genes in mouse 
cells.

There are other tools and approaches to compare and link different 
identifiers. These include KARMA (7), SRS (8), Resourcerer (9), 
and ProbematchDB (10). The availability of these tools is shown in 
Table 1.

4. Functional Interpretation of Gene Groups

Once the genes are annotated with suitable identifiers, the next step of 
analysis is typically the identification of the biological processes and 
functions associated with the gene groups. This interpretation task, called 
functional profiling, is laborious and complex. Ontologies that provide a 
systematic representation of existing knowledge are a suitable starting 
point for an automation of this step. An ontology specifies a controlled 
vocabulary and the relations between the terms within the vocabulary. 
For molecular biology the GO Consortium provides the GO as an inter-
national standard (11). The terms of GO describe molecular functions, 
biological processes, or cellular locations of genes and gene products. The 
relations between the terms form a directed acyclic graph (DAG), where 
the nodes represent the terms (12) (Figure 5). A variety of tools are 
available for browsing and editing the ontology, as well as for using it in 
statistical and biological analysis of data, e.g., http://www.geneontology.
org/GO.tools.shtml. Many chip manufacturers provide GO terms for the 
genes covered by their chips, e.g., Affymetrix (http://www.affymetrix.
com/support/); otherwise, gene groups can be annotated with GO terms 
using tools like HomGL, as discussed in the previous section.

4.1. GO-Based Functional Profiling

In the following section, we discuss how to utilize the knowledge repre-
sented by GO to automatically test if any term is significantly associated 
with a studied group of genes. To profile gene groups, we require four 
data sources: a test group of genes (e.g., up-regulated genes), a reference 
group (e.g., all significantly expressed genes), GO annotations for these 
genes, and the GO. For each term in the ontology, we ask whether this 
particular term is enriched in the test group as compared to the reference 
group. The null hypothesis is that the test group is sampled randomly 
from the reference group.
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To test for this association, we categorize each gene in two ways: first,
whether it is annotated with the term under consideration or not, and 
second, whether it belongs to the test group or not. Based on these cat-
egories we build a 2 × 2 contingency table of gene frequencies for each 
term. Figure 6 shows the structure of such a contingency table. Using 

Gene_Ontology (3673)

molecular_function (3674)

binding (5488) signal transducer activity (4871)

receptor binding (5102)

hormone activity (5179)

Figure 5. Part of the DAG representing the GO. Annotations are usually given 
as terms in different parts of the DAG, e.g., term 5179 hormone activity, implying 
a series of more general terms (identifiers 5102, 5488, 4871, 3674, 3673).
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Figure 6. Contingency table of gene frequency that is calculated for each term. 
Each gene is categorized in two ways: whether it belongs to the test group and 
whether it is annotated with the term under consideration. In total, 14,480 genes 
are in the reference group. 437 genes are annotated with this specific term, and 
20 of them are in the test gene group. 14,043 are not annotated with this term. 
Out of this, 65 are in the test group. The number of genes in the test group is 
85.
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Fisher’s exact test http://home.clara.net/sisa/fishrhlp.htm, we compute 
p-values that allow us to detect and quantify associations between the 
two categorizations. Fisher’s exact test is based on the hypergeometric 
distribution, and works in a similar manner as the -test for independence. 
The -test provides only an estimate of the true probability values, and it 
is not accurate if the marginal distribution is very unbalanced or if we 
expect small frequencies (less than five) in one of the cells of the con-
tingency table. Both situations are typical for the task and data under 
consideration. Fisher’s exact test can, in principle, quantify the reduction 
of a term in respect to the reference group, but a reduction is unlikely 
to be detected in typical data sets.

4.2. Multiple Testing

The definition of statistical significance is a major challenge due to the 
large number of terms that need to be tested. The use of single-test 
p-values is justified only if we test whether a single term is associated 
with a specific gene group. However, in genome-wide screening experi-
ments, the situation is fundamentally different; the current GO includes 
approximately 19,000 terms, out of which typically several thousand 
terms appear in the annotation of an investigated gene group and have 
to be tested. If one performs that many tests, problems arising from 
multiple testing cannot be ignored. Namely, even when we apply a very 
conservative threshold, like p < 0.001, a few terms will be reported to be 
associated with the test group by sheer chance. This phenomenon is 
known as a false-positive or type-I error. The standard solution for this 
problem is to calculate adjusted p-values. These adjusted p-values control 
the number of false discoveries in the entire list and can be used similarly 
to normal p-values for single tests (13).

To control the number of false discoveries, these methods determine 
adjusted p-values to control the false discovery rate (FDR) that quanti-
fies the expected portion of false discoveries within the positives. If there 
is no prior expectation about an association between the gene list and 
any biological process, one might favor the family-wise error rate 
(FWER). However, the typical case in profiling gene lists is that one 
expects some terms to be enriched. In this case, the FDR is an adequate 
measure of false discoveries. Both rates can be reliably estimated by 
resampling simulations, but this method suffers from very long runtime, 
even on modern computers. Alternatively, several approaches exist to 
estimate the FDR from the single-test p-values (e.g., Benjamini-
Hochberg and Benjamini-Yekutieli [13]). These methods are designed to 
cope with general problems, but turn out to be not particularly suitable 
for the specific problem considered here. For the specific problem of 
profiling gene groups, the expected FDR can also be determined exactly 
by an analytical expression (14). It was shown that the resulting profile
does not depend critically on the precise composition of the test group. 
This is an important characteristic, as the extraction of gene group from 
high-throughput experiments always has to deal with the trade-off 
between specificity and sensitivity. Therefore, it is often not clear which 
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genes to include or exclude from a certain gene group, e.g., by choosing 
a specific threshold.

4.3. Software

There are several software implementations available to profile gene 
groups using GO, including Onto-Express (15), EASE+David (16,17), 
GoSurfer (18), GoMiner (19), GeneMerge (20), FatiGO (21), GOstat 
(22), and Bingo (23). Most of the software packages listed before have 
some multiple testing correction. Results from applications that do not 
use multiple testing corrections are hard to interpret because false-
positive predictions dominate. The same applies to the Benjamini-
Hochberg estimate used in Bingo. On the other hand, the packages using 
appropriate standard multiple testing corrections (Bonferroni in Gene- 
Merge, Benjamini-Yekutieli in FatiGo, GoStat, and GOSurfer do give 
control of the number of false discoveries, but are too conservative, and 
therefore have less power. EASE uses a jackknife procedure that is 
similar to resampling to correct for multiple testing, which can give more 
robust scores, although they cannot be interpreted as adjusted p-values.
GoMiner uses resampling to determine the multiple testing correction, 
and Gossip (14) (http://gossip.gene-groups.net/) uses the exact analytical 
results for the FDR determination and provides profiling gene group 
visualizations of the results (Figure 7). The exact analytical expression 
and the resampling method perform significantly better then the 
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Figure 7. The processes significantly (black p < 0.01; gray p < 0.05) associated 
with genes induced by the growth factor PDGF via the kinase Erk (6). The gene 
group was first mapped to UniGene identifiers and annotated using HomGL, 
and then analyzed with Gossip.
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estimation methods (14). The analytical expression also allows a very 
fast computation, and thus opens the door to combining the automatic 
functional profiling with other bioinformatics methods, like sequence 
alignment and motif search, to build powerful and efficient perdition 
tools (24–26). Table 2 summarizes information on the tools available for 
the functional profiling of gene groups and their multiple testing 
corrections.

5. Retrieval and Analysis of Sequences

Although the abundance of proteins can be controlled through different 
processes, alteration of gene transcriptional rates is the most directly 
utilized cellular mechanism (27). Therefore, a standard next step of anal-
ysis of a co-regulated gene group is the prediction of transcription factors 
controlling expression of the genes. In this process, nucleotide sequences 
expected to contain regulatory regions of the genes (promoters) are 
predicted, extracted, and searched for putative transcription factor 
binding sites.

The motifs that are recognized by the transcription factors are similar 
to their surroundings and, consequently, difficult to detect by computa-
tional methods. Because it is believed that the majority of the regulatory 
sites are located close to transcription start sites (TSSs), usually only 
short fragments (1–10 kbp) upstream of the transcripts are selected for 
further analysis. It has been shown that a single gene may have multiple 
TSSs and, consequently, multiple promoter regions. The following collec-
tions of experimentally verified promoters may be useful for sequence 
extraction. The eukaryotic promoter database EPD (28) (http://www.
epd.isb-sib.ch) provides an annotated nonredundant collection of eukary-
otic POL II promoters based on underlying experimental evidence 
obtained from full-length cDNA clones. The Functional Annotation of 
the Mouse consortium (29) (http://fantom3.gsc.riken.jp/) annotated the 
mouse genome with variations in transcripts arising from alternative 
promoter usage and splicing. Another library, DBTSS (30) (http://dbtss.
hgc.jp/), defines putative promoter groups by clustering TSSs within a 

Table 2. Selection of Web and desktop applications for functional profil-
ing, and their approach to the multiple testing issues.
Application Multiple Testing Comments

Gossip (14) FDR, Analytical exact Desktop Appl. and
FWER, Approx.  Integrated into (24,26)

GoMiner (19) Resampling Queuing System, Web
EASE (16,17) Jackknife Desktop Appl.
Bingo (23) Bonferroni (FWER) Desktop Appl.

Benjamini–Hochberg  Cytoscape Plugin
(FDR)

FatiGo (21) Benjamini–Yekutieli Web Appl.
GoStat (22) Holm, Benjamini–Yekutieli Web Appl.
GOSurfer (18) Benjamini–Yekutieli Desktop Appl.
Gene-Merge (20) Bonferroni Web & Desktop
For an up-to-date list of available tools refer to http://www.geneontology.org/GO.tools.
shtml.
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500-base interval. Finally, the EnsEMBL (31) application programming 
interface provides a convenient framework to implement the extracting 
subroutines in the PERL language.

There are two fundamental approaches for searching putative binding 
sites in the chosen promoter regions (32). Based on the assumption that 
genes of the group are co-regulated by the same transcription factor, one 
may search for a pattern recognized by the factor, which should occur 
repeatedly in the sequences. Gibbs sampler (33), AlignACE (34), or 
GLAM (35) detect such motifs by aligning short fragments of the input 
promoter sequences based on the statistical method of iterative sam-
pling. MEME (36) uses expectation maximization and artificial intelli-
gence heuristics to construct an alignment. Approaches by van Helden 
et al. (37) and Kielbasa et al. (38) go enumeratively through the space 
of possible motifs and then select those that are overrepresented in the 
promoter sequences with respect to randomized sequences.

Alternatively, the promoters may be scanned for patterns similar to 
those extracted from libraries containing sequences experimentally 
found to be bound by transcription factors. Such libraries (Jaspar [39] 
and Transfac [40,41,42]) are prepared out of binding sites, for which there 
exists clear and direct evidence for function and identity of the bound 
transcription factor. Many tools offering different scoring strategies 
predict new candidate sites on the basis of similarity to profiles retrieved 
from such precompiled libraries (43,44). Clover (available at http://zlab.
bu.edu/clover/) allows one to assess which, if any, of the motifs are sta-
tistically over- or underrepresented in the sequences (45). The method 
developed by Rahmann et al. (46) provides a statistically well-founded 
method to calculate score thresholds optimized for detection of true 
positive binding sites.

The rate of transcription factor binding site predictions varies for dif-
ferent binding models and their parameters, but typically, a candidate 
site is reported every 500–5,000 bp (47) for each studied transcription 
factor. Consequently, concepts utilizing various properties of regulatory 
mechanisms have been developed to improve specificity of the predic-
tions. Bussemaker et al. (48) and Caselle et al. (49) correlate the presence 
of binding sites with gene expression levels. Wagner et al. (50) proposes 
to detect closely spaced binding sites of the same transcription factor, 
based on the observation that many transcription factors show coopera-
tivity in transcriptional activation. The algorithms of Pilpel et al. (51), 
Frith et al. (52,53), and Murakami et al. (54) score overrepresented close 
occurrences of binding sites recognized by different transcription factors. 
Experimental evidence for such interactions is also collected in a dedi-
cated database (55). Moreover, phylogenetic footprinting, which is pref-
erential conservation of functional sequences over the course of evolution 
by selective pressure, results in a striking enrichment of regulatory sites 
among the conserved regions (56,57). These lines were followed to 
combine the knowledge of co-regulation among different genes and 
conservation among orthologous genes to improve the identification of 
binding sites (58,59). Another method reducing the number of false-
positive predictions associates cooperative binding of transcription 
factors with biological functions of the corresponding genes using GO 
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and Gossip (25,26). Finally, it should be noted that the profiles recog-
nized by transcription factors that are available in the libraries are often 
similar to each other, leading to overlapping binding site predictions. 
Therefore, the predictions are easier to interpret when only independent 
profiles are selected for searching (60,61).

6. Conclusions

This chapter discusses several tools that help systems biologists to handle 
and analyze gene groups from different high-throughput experiments 
and databases. Figure 8 shows a typical analysis pipeline that can be set 
up to generate hypotheses from given gene groups. First, the gene groups 
represented by diverse identifiers have to be matched to identifiers that 
uniquely represent one gene. We discussed in the first part of this chapter 
that UniGene and Entrez Gene are such identifiers. We also introduced 
tools like HomGL (5) to perform this mapping. These tools also facilitate 
the comparison of different gene groups, allowing us to find common 
genes.

These gene groups can then be further analyzed. With the systematic 
functional annotation provided by the GO, it is possible to perform 
automated functional profiling of gene groups. We discussed statistical 
frameworks that test whether functions, processes, or locations defined

AA194084
AA291356
AA399119
...

Hs.737
Hs.3041
Hs.326035
...

Mapping to
unique identifiers

AA194084
AA399119
AB007938
...

Hs.737
Hs.3041
Hs.7764
...

Hs.737
Hs.3041
Hs.7764
...

Finding overlap
between experiments

Functional profiling
using Gene Ontology
and promoter analysis

>Promoter Hs.737
ACGCGAGCGATTCATCTTACTT
CGACGACGACGAGTTTGCAGT
ACGTTACGACTTTACGATCTGA

Figure 8. Suggested pipeline to analyze gene groups from high-throughput 
experiments. Gene groups from different experiments are to be mapped to 
unique identifiers, such as UniGene or Entrez Gene. Subsequently, these lists can 
be compared to find common/consistent entries. These lists can then be further 
analyzed functionally using GO, and their promoter sequences can be 
analyzed.
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by the GO are significantly enriched within a gene group when compared 
to a reference group. To avoid misleading results, multiple testing issues 
must be taken into account. We discussed tools for performing automatic 
functional analysis, and hinted at the pitfalls and useful combinations of 
this method with other bioinformatics methods like sequence alignment 
and promoter analysis.

Finally, promoters of coexpressed genes might be studied to identify 
transcription factors and their binding sites, which might explain gene 
co-regulation. Although several methods are available to extract pro-
moter sequences and perform a search for transcription factor binding 
sites, the results are still very error prone and dominated by false pre-
dictions. Thus, although many tools exist to analyze promoter regions, 
the refinement of the methods is still an active research topic. Although 
the result should be interpreted with care, the functional analysis of gene 
groups and the analysis of promoter sequences may collectively facilitate 
the generation of new hypotheses from genome-wide experiments.
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The Dynamic Transcriptome of Mice

Yuki Hasegawa and Yoshihide Hayashizaki

Summary

The mouse transcriptome was comprehensively analyzed by the collec-
tion of mouse full-length cDNA clones. With the development of several 
technologies, the international Functional Annotation Of Mouse 
(FANTOM) sketched the outlines of the transcriptional framework, 
finding an unexpectedly large number of noncoding and sense/antisense 
(S/AS)-pairing RNAs, which was called a “novel RNA continent.” In 
this chapter, the mouse encyclopedia project and the complexity of the 
mouse transcriptome will be introduced to give you a new view of the 
transcriptome world.

Key Words: FANTOM; transcriptome; ncRNA; promoter; sense/anti-
sense; full-length cDNA (FL-cDNA).

1. Introduction

In the past decade, several mammalian genomes have been sequenced, 
including the genomes of human and mouse (1–3). In 2004, the Encyclo-
pedia of DNA Elements (ENCODE) Consortium announced that only 
2% of the total genome encodes proteins, which are the essential build-
ing blocks for constructing a human body, thereby implying that the 
genomic sequence in itself cannot explain the complexity of gene func-
tions and mechanisms (4). Turning to the transcriptome for answers, the 
transcriptome consisting not only of transcripts heading for translation, 
but also of a large number of RNA transcripts with biological activity of 
their own, the first step is to find all transcripts. Transcriptome analysis 
is much more demanding than genome sequencing because thousands 
of RNA molecules must be isolated and sequenced from all tissues and 
from all developmental stages. To explore the functions attached to these 
transcripts, the mouse transcriptome has been comprehensively ana-
lyzed after creating a large collection of full-length cDNA (FL-cDNA) 
clones (5–7). After developing multiple technologies, including the con-
struction of full-length mouse cDNA libraries, cDNA microarrays, and 
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transcriptional starting site detection, the framework of the transcrip-
tome was tentatively analyzed by the international FANTOM con-
sortium (5–7). Previously, the FANTOM1 and FANTOM2 meetings 
launched an approach based on comprehensive full-length cDNA isola-
tion, which allowed the identification of noncoding RNA (ncRNA) 
expression and showed that ncRNAs are more widespread than believed 
(5–7). After FANTOM3, which focused on transcription start-site iden-
tification, transcriptional units (TUs), and framework clustering analysis, 
larger numbers of ncRNAs were identified, among which more than 
30,000 may function as coexpressed S/AS regulatory pairs. In September 
2005, the Institute of Physical and Chemical Research (RIKEN) group, 
together with collaborators from 45 institutes in 11 countries, published 
two milestone papers to transform our understanding of the informa-
tion content in the mammalian genome (5,8). In this chapter, the 
history of the Riken Mouse Encyclopedia will be introduced, and 
the discovery of a novel RNA continent through the comprehensive 
analysis of mammalian transcriptome will give you a new view of the 
genomic world.

2. Mouse Encyclopedia Project

2.1. The Choice of Mouse

To collect maximum RNA samples to construct libraries, mouse was 
chosen over human, due to the fact that mice have a very short life cycle 
and are easy for crossbreeding; various tissues from different develop-
mental stages can be extracted easily. Because mouse and human are 
said to share approximately 80% of genes (2), collection of mouse full-
length cDNA will provide us with an amazing view of a mammalian 
transcriptome close to our own.

2.2. The Transcriptome Dataset

The characterization of all transcripts present in a cell or tissue at a given 
time, and the mechanisms driving their expression, is the aim of tran-
scriptome research (9). To describe the mammalian transcriptome in the 
Riken Mouse Encyclopedia project, we combined isolated full-length 
cDNA clone sequences with the new cap analysis gene expression 
(CAGE) data (10), the gene identification signature (GIS) (11), and gene 
signature cloning (GSC) ditag technologies for the identification of tran-
scription initiation and termination sites (12). Each technology and the 
new landscape of the mammalian transcription will be described in the 
following chapters.

3. Technology Used for the Mouse cDNA Encyclopedia

3.1. Full-Length cDNA Library Construction

The mouse full-length cDNA (FL-cDNA) library has been constructed 
from 263 RNA samples, including samples from various developmental 
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stages and it contains a complete copy of the mRNA population, includ-
ing splice variants (13). FL-cDNAs are the starting material for the con-
struction of the RIKEN FL-cDNA encyclopedia. Cloning of FL-cDNA 
inserts has previously been hampered by problems related to both the 
preparation and the cloning of long cDNA inserts. The first difficulty was 
the selection of full-length cDNAs, for several reasons; one of them is 
the RNA’s ability to form secondary structures (Figure 1). To solve these 
problems, four key technologies were developed: an mRNA elongation 
procedure, a new selection method (13), the construction of a new vector 
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Figure 1. Commonly encountered problems in creating and selecting full-length 
cDNAs. Of the four groups of mRNAs in the figure, only short mRNA is effi -
ciently converted to full-length cDNA in conventional reverse transcription reac-
tions. Long mRNA and mRNAs rich in secondary structures are transcribed 
predominantly into truncated first-strand cDNAs that are discarded during the 
selection process. Rare mRNAs, which tend to be longer in length than highly 
expressed mRNAs, face the same difficulties. Most of these difficulties can be 
overcome by using RT together with trehalose and sorbitol.
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family (14), and a combined normalization and subtraction procedure 
(15).

3.2. mRNA Elongation Strategies

The first difficulty faced was an inefficient synthesis of first-strand
cDNA. The major obstacle to preparing high-quality cDNA libraries 
has been the low efficiency of reverse transcriptase (RT) to synthesize 
full-length cDNA because full-length cDNA tend to form strong mRNA 
secondary structures. To inhibit the formation of these structures, a 
higher reaction temperature is needed, which also requires more 
thermostable enzymes. So far, an isolation of thermostable enzymes 
has been restricted to enzymes existing in thermophilic organisms. 
To overcome this limited availability, we explored a new method to 
confer thermal stability to enzymes by using disaccharide trehalose 
and sorbitol, which can be used as reaction additives to stabilize or 
stimulate enzymatic activity at unusually high temperatures. The treha-
lose can also be used for thermosensitive enzymes, as though they would 
be thermostable. In fact, even thermoactivated RT, which displays 
full activity at 60ºC instead of the standard 42ºC (13), became powerful 
enough to synthesize full-length cDNA without early termination. 
At an increased temperature, the stability of secondary structures 
within single-stranded mRNA templates is decreased, allowing easier 
passage of RT through the knotty structures typically found in the 
5′-untranslated regions of mRNAs. Thermoactivation of RT results 
in longer cDNAs, a higher representation of FL-cDNAs in the library, 
and an overall higher recovery of FL-cDNA in the subsequent cap-
trapper protocol.

3.3. Avoidance of Internal Cleavage

The RT reaction contains 5-methyl-dCTPs instead of the standard dCTP, 
causing the first strand of cDNA to be methylated. Therefore, synthesis 
of the second strand in the presence of standard 4 dNTPs results in 
hemimethylated double-stranded cDNAs. Internal sequences of hemi-
methylated double-stranded cDNA are resistant to cleavage by methyla-
tion-sensitive restriction enzymes. In the cloning step, only the restriction 
sites located in the unmethylated primer-adapter sequences at the ends 
of the double stranded cDNA will be cleaved. In this technology, SstI 
restriction enzyme was used because it never cuts hemimethylated 
cDNA.

3.4. Selection of FL-cDNAs

Another difficulty was to collect only the completed sequences from the 
elongation procedure. The selection of FL-cDNAs is achieved by cap-
trapping (13,16,17) (Figure 2). After the completed first strand cDNA 
synthesis, a biotin residue is chemically linked to the diol group of the 
cap structure located at the 5′ ends of the mammalian mRNAs, “trapping 
the cap.” RNase I (a single-strand–specific nuclease that cleaves the 
phosphodiester bond between any two ribonucleotides in exposed 
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single-stranded RNA) is then used to eliminate the biotinylated cap from 
incompletely synthesized cDNA–mRNA hybrids, which will be degraded 
into a mixture of mono- and oligonucleotides. The RNA moiety in the 
hybridized segment of mRNA in cDNA–mRNA hybrids is protected 
from digestion by hemimethylation.

The full-length cDNA–mRNA hybrids retain their caps and are then 
recovered by binding to streptavidin-coated magnetic beads.
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Figure 2. CAP trapper technology. After single-stranded cDNA synthesis, CAP 
and polyA sites are labeled. RNase I is used to cleave remaining single-stranded, 
uncompleted RNA, while DNA-RNA hybrids survive due to their protective 
hemimethylation. Single-stranded RNA is cleaved by RNase I at 5′-sites and 
at polyA sites. The non-polyT complementary sequence is designed as a primer 
for the first cDNA. The biotinylated site of mRNA is preserved from RNase I 
cleavage by hybridization of mRNA with FL-cDNA. As a result, only mRNA 
hybridized with full-length single-stranded cDNA, which can be trapped by 
streptavidin beads, can be gained. The first-strand cDNA is then isolated and 
subjected to the cloning process. (Reproduced with permission from Carninci 
et al.)
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3.5. Construction of a New Vector

A selection of adequate cloning vectors is a key component for a suc-
cessful production of FL-cDNA library clones. FL-cDNA library often 
exhibits problems with cloning biases compared with normal library 
constructions because of the following reasons:

1. Longer mRNA is more susceptible to damage.
2. Shorter FL-cDNA is easier to synthesize than longer cDNAs, even 

under higher temperature with trehalose and sorbitol.
3. Commercially available vectors prefer the cloning of shorter cDNA, 

especially in plasmid vectors.

To overcome these problems, a new class of cloning vectors was devel-
oped: λ-full-length cDNA (λ-FLC) cloning vectors (14) (Figure 3). These 
vectors can be bulk-excised for the preparing of FL-cDNA libraries in 
which a high proportion of the plasmids carry large inserts that can be 
transferred into other vectors. By using λ vectors, long cDNA clones can 
be cloned without size bias.

3.6. Subtraction and Normalization Technology

Many of the problems in discovering new genes stem from the differ-
ences in expression levels between mRNAs in different mammalian cells. 
Largely abundant mRNA disguises the presence of rare transcripts. By 
enhancing the efficiency of single-pass sequencing (minimum number of 
sequencing/maximum number of different transcripts), by reducing the 
prevalence of superabundant and intermediately expressed cDNAs, 
the rare transcripts can be trapped. The normalization and subtraction 
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Figure 3. General scheme of the λ-FLC family of functional elements. The func-
tional elements of the vectors are the left and right arms, the cloning size regula-
tor (stuffer II); a plasmid derivative of pBluescript, the bulk excision elements 
(loxP or Gateway sequence); and the stuffer, including background-reducing and 
-monitoring sequences. The plasmid is excised using Cre recombinase, or only 
the cDNA inserts are transferred with the Gateway system. (Reproduced with 
permission from Carninci et al.)
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technologies allow the construction of a library without any bias toward 
abundant transcripts inherent in the original mRNA population (15). 
Further improvement can be achieved by subtracting unwanted cDNAs 
from the final library. Both normalization and subtraction are accom-
plished by carefully controlled hybridization of first-strand cDNA to 
RNA drivers. For normalization, the driver is a biotinylated aliquot of 
the RNA initially used as a template for cDNA synthesis; for subtraction, 
the driver consists of a biotinylated RNA population prepared by in vitro 
transcription of well-characterized sets of cDNA clones. The hybrids 
formed between the abundant and unwanted cDNAs are then easily 
subtracted with another probe. The normalization procedure almost 
doubled the gene discovery compared with nonnormalized cDNA librar-
ies, and this is further improved for the libraries created with a combina-
tion of normalization and subtraction technologies.

3.7. High-Throughput Sequence Analysis System: Riken Integrated 
Sequencing Analysis

To accomplish the huge number of sequencing required for the Mouse 
cDNA Encyclopedia Project, a high-throughput sequencing system was 
developed. The Riken Integrated Sequencing Analysis (RISA) system 
(18) was constructed, which consists of 384-multicapillary auto sequencer, 
a 384-multicapillary array assembler, and a 384-multicapillary casting 
device. The RISA sequencer is capable of simultaneously analyzing 384 
independent sequencing products. RISA system can be used with any 
fluorescent-labeled sequencing reaction. RISA could read 99.2% of the 
mouse FL-cDNA sequences successfully and an average 654.4-bp could 
be read with more than 99% accuracy. RISA also contains an incubator, 
a plasmid preparator, a RISA filtrator, a densitometer, and a high-
throughput thermal cycler. To complete the sequencing of all cDNAs 
from various tissues in a few years, sequencing speed had to be acceler-
ated. With 16 RISA sequencers, it has become possible to process 50,000 
DNA samples per day.

3.8. New Distribution Method for Transcriptome Resources: 
The DNA Book

As described in the previous section, the full-length cDNA clone bank 
and the database will be the major platform resource for postgenomic 
and posttranscriptome analysis. However, because the storage and the 
delivery system will be a huge logistical problem for a total of 2 million 
clones, new technology was developed to handle this number of physical 
clone samples; the “DNABook” (19,20). The DNABook is basically a 
book where the physical clones are printed on paper sheets, thereby 
enabling shipping in the form of a DNA book. The DNA printing was 
tested in various conditions, including humidity, temperature, and resis-
tance to touching and/or scratching. Once a user receives the encyclope-
dia DNABook, clones can be amplified by PCR by simply punching out 
DNA spots on the paper, then dissolving the paper in the reaction 
mixture, and the clones can be used for further analysis in 2 hours. This 
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DNA book will be the new distribution and storage method for clone 
resources produced by large-scale transcriptome analysis.

3.9. Full-Length cDNA Microarrays

The mouse full-length cDNA microarray was developed for validation 
of the reproducible expression profile of mouse full-length cDNA ency-
clopedia. At the FANTOM1 meeting, microarrays with 18,816 mouse 
cDNAs were used for expression profiling analysis for 49 adult and 
embryonic mouse tissues (21). Target DNAs were collected from RIKEN 
mouse cDNA libraries (which were constructed as described above). 
The experimental setup consisted of a Stanford-type arrayer with 16 
tips giving a spot diameter of 100–150 μm, producing slides with 14,000 
spots. In comparison to the earlier experimental time of 40 hours, the pro-
cess was speeded up 6-fold by the use of the 48 pins double-headed 
arrayer.

cDNA microarray is a powerful tool for high-throughput analysis for 
expression profiling; however, it also has limitations because it can be 
applicable only for genes or transcripts with determined sequences.

3.10. CAGE Technology

Approaches in transcriptome research have focused on large collections 
of a “representative clone” for each gene. These approaches addressed 
neither the dynamics of transcriptional regulation nor regulatory princi-
ples like alternative promoter usage or splicing (22,23). Partial identifica-
tion of the promoter sites has been provided by gene discovery programs 
based on the sequencing of FL-cDNA libraries (24,25). By sequencing 
5′ ends from FL-cDNA libraries and mapping the sequences to the 
genome, several thousand promoters can be determined and correspond-
ing coding and regulatory regions can be identified. Although the analy-
sis can produce statistics on transcriptional start sites derived from large 
numbers of 5′ end sequences, these methods require a massive number 
of comprehensive sequencing, which is prohibitively expensive. The serial 
analysis of gene expression (SAGE) is based on the cloning and subse-
quent sequencing of concatamers of short cDNA fragments derived from 
3′ end of multiple mRNAs (http://cgap.nci.nih.gov/SAGE) (26–29). 
Although SAGE is a relatively cheap high-throughput digital data col-
lection technology, and it gives the information for counting transcription 
units (TUs), it cannot be used for identifying promoters in FL-cDNA 
cloning. To solve these problems, CAGE tag technology (10), which 
allows high-throughput identification of sequence tags corresponding to 
5′-ends of mRNA at the cap sites and the identification of the transcrip-
tion start site (TSS), was developed. It also allows promoter usage analy-
sis, gene expression analysis, and obtains absolute expression values for 
expressed genes in a common reference sample.

CAGE libraries are based on a preparation of tags that contain the 
initial 20 nucleotides from mRNA 5′ ends, which are concatenated and 
sequenced (Figures 4 and 5). The method uses cap-trapper FL-cDNAs, 
to which linkers are attached in the 5′ end. This is followed by the cleav-
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Figure 4. Comparison between EST, SAGE, and CAGE. EST technology consists 
of cloning and sequencing of each tag derived from random segments of mRNA 
into each vector, followed by a sequencing step. SAGE is based on the cloning 
and subsequent sequencing of concatamers of short DNA fragments derived from 
3′-ends of multiple mRNAs. CAGE uses cap-trapper FL-cDNAs, to which linkers 
are attached in the 5′-ends. This is followed by the cleavage of 20-bp-long 
segments by class II restriction enzymes, PCR, concatamerization, and cloning of 
the CAGE tags. (Reproduced with permission from Shiraki et al.)

age of a 20-bp-long segment by class II restriction enzymes, PCR, con-
catamerization, and cloning of the CAGE tags. CAGE tags derived by 
sequencing these libraries are mapped to the genome and used for TSS 
and expression analysis. In addition, it can be used for the determination 
of the 5′ end borders of new TUs. Approximately 70% of the CAGE tags 
could be mapped by BLAST alignment program and a mapping strategy 
to the genome (5). After mapping CAGE tags, plenty of unclassifiable
clones appeared. These unclassifiable tags could be confirmed by RACE 
experiments. The 5′-end–specific tags will become one of the most impor-
tant tools in system biology in being fast, cheap, specific and by giving us 
information about TSS.

3.11. GIS and GSC Technologies

At the same time as the development of CAGE technology, Genomic 
Institute of Singapore also announced another method for promoter 
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identification analysis, GIS (11). GIS contains not only 5′ end tags, but 
also contains 3′ end tags. GIS and GSC combine their 3′ and 5′ tags into 
ditags. By combining both ends of a cDNA into one, ditags could over-
come the limitations of the separate preparation of 5′-SAGE and 3′-
SAGE libraries from the same sample. However, one of the limitations 
in GIS mapping is that it cannot allow for the direct identification of 
trans-spliced transcripts in the initial mapping. Additional experiments 
are needed for the amplification of the corresponding cDNA inserts 
required for the annotation of unmapped ditags. New class IIs restriction 
enzymes will greatly help in the preparation of longer tags. The only dif-
ference between GIS and GSC is that the latter use subtracted libraries. 
Subtraction libraries can provide more data on rare transcripts and a 
combination of 5′-end cDNA arrays and CAGE tags will provide us with 
new views of expression profiling.

4. FANTOM

4.1. FANTOM1 and 2

After the collection of FL-cDNA data resources was started, the data 
was clustered into groups with 5′ end and 3′ end sequence homology. The 
full-length sequenced clones were analyzed according to motif and 
domain, and annotated to reveal the transcriptome complexity. This 
annotation process needs not only computational power but also human 
effort for the curation process. FANTOM was the name for the project 
in which molecular biologists from various countries and institutes were 
called on to annotate cDNAs with the use of various databases. The 
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Figure 5. Usage of sequencing tags in transcript identification. Any transcript 
with a known sequence can be identified by a short signature sequence or tag, 
depending on the approach; such tags can be obtained from different regions. 
For SAGE, the location of the tags is determined by the recognition sequence 
of an anchoring enzyme; in most cases, tags close to the 3′-ends are isolated. 
Alternatively, SAGE tags can also be isolated from regions close to the 5′-end.
New approaches aim to isolate the true 5′- (CAGE, TEC-RED, 5′SAGE) or 3′-
ends (3′SAGE), including the option to clone 5′- and 3′-ends into ditags (GIS)(as 
indicated in light gray). (Reproduced with permission from Harbers et al.)
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FL-cDNA libraries were integrated into a database, where clustering of 
the sequenced full-length cDNAs into a nonredundant and comprehen-
sive set provided a platform for functional analyses of the transcriptome 
and proteome. However, manual curation to identify truncated tran-
scripts and inappropriate clustering of closely related sequences was still 
required. The Representative Transcript and Protein Sets (RTPS) pipe-
line (Figure 6) was designed (30) and introduced to automate and make 
the comprehensive analysis faster. On the FANTOM2, the RTPS pro-
vided the framework of global transcriptome analysis on mouse genome, 
based on available sequences information, such as reference sequences 
(refseqs) and expressed sequence tags (ESTs) at a single point at one 
time (31). However, it was not enough to reflect the comprehensive 
mouse transcriptome, such as tissue differences or developmental stages, 
and the manual curation was not fast enough to catch up with the fre-
quent data update. After the FANTOM2, the RTPS pipelines were rede-
signed into a fully automated search engine, including other species, such 
as human and rat (30).

Before the discovery of the novel RNA continent in 2005, there were 
three major activities organized by the FANTOM consortium. In 
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Figure 6. RTPS pipeline. Representative sequences are selected from the RTPS 
pipeline by a series of steps including transcript selection, clustering based on 
genome mapping and splicing patterns and are then merged based on grouping 
by curated databases, computational clustered databases, and genome mapping. 
(Reproduced with permission from Kasukawa et al.)
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FANTOM1 in 2000, approximately 12,000 of FL-cDNAs were annotated, 
and the number of genes in mice was estimated. The FL-cDNA collection 
continued after FANTOM1, and the second meeting took place in 2002. 
In FANTOM2, more than 60,000 FL-cDNAs were analyzed, and 40,000 
newly collected clones were annotated. FANTOM2 also contributed 
data on the existence of ncRNA and a large number of alternative splic-
ing events.

4.2. FANTOM 3

After FANTOM2, an additional 40,000 FL-cDNAs were sequenced, and 
the number of whole FL-cDNAs (in which 5′- and 3′-end–sequenced
cDNAs were included) reached 2 million. In FANTOM3, the functional 
analysis was accelerated because CAGE data were added. The CAGE 
tags provided TSS sequences, and GIS and GSC contributed with the 
transcriptional framework. More than 180,000 CAGE tags were mapped 
as transcription starting sites, of which 91 were confirmed to indicate true 
TSS. All data from the FANTOM3 can be accessed at http://fantom3.gsc.
riken.jp/db/ and http://www.ddbj.nig.ac.jp (Table 1).

4.2.1. The Novel RNA Continent: New Defi nitions of Vocabulary
After comprehensive analyzing of the transcriptome, the definition of 
“gene” needs to be changed. The following three words have been newly 
defined (Figure 7).

• Transcriptional Forest (TF): A genomic region in which either strand 
will be the target of transcription as an mRNA precursor.

• Transcriptional Desert (TD): A genomic region in which none of the 
strands will be the object for transcription.

• Transcriptional Unit (TU): The complex of exon regions in which 
exons overlap more than 1 bp on the same strand as a group. This defi -
nition is closest to the original concept of a gene.

• Transcriptional Framework (TK): The grouping of transcripts that 
share common expressed regions, as well as splicing events, termina-
tion events, or TSS.

Table 1. DATA set resources.
Number of

Data Sources TOTAL Libraries Safely mapped

Riken full-length cDNAs 102,801 237 100,303
Public(non-RIKEN) mRNAs 56,009  52,119
CAGE tags (mouse) 11,567,973 145 7,151,511
CAGE tags (human) 5,992,395 24 3,106,472
GIS ditags 385,797 4 118,594
GSC ditags 2,079,652 4 968,201
RIKEN 5 ESTs 722,642 266 607,462
RIKEN 3 ESTs 1,578,610 265 907,007
5/3 pairs of RIKEN cDNA 448,956 264 277,702
This table represents the summary of the total data sources used for FANTOM3. Repro-
duced with permission from Reference 5.
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Analyses with this new vocabulary have disclosed that unexpected 
large regions of the genome are transcribed into RNA; approximately 
44,000 TUs, which is more than 70% of the genome. Of these TUs, more 
than 20,000 were found as ncRNA (5).

4.2.2. Decrease in TU Numbers
The CAGE, GIS, and GSC analysis showed many cases of TU fusion, 
in which unrelated and differently annotated transcripts can be joined 
to make a TK, and the TK can be clustered together into TFs. The 
total number of TFs (with GSC data) is 18,461, and they encompass 
62.5% of the mouse genome. By this grouping, the number of TUs 
experienced a decline; however, subsequent analysis showed that on 
the contrary, an increase (65%) in TU numbers caused by alternative 
promoters, polyadenylation sites, and a higher frequency of alternative 
splicing occurred.

TU

TF/TD

Transcript Forest (TF): A genomic region where RNA polymerase transcribes either strand 
into hnRNA or pre-mRNA.        

Transcript Desert (TD): A genomic region where none of  the strands are transcribed.

Transcriptional Unit (TU): A genomic region where transcipts have exon-overlaps on the        
same strand (sharing direction and partly location)

New definition of gene

Coding CDS 
Exon with no CDS
Intron, arrow indicates direction of strand

52170 k 52180 k 52190 k 52200 k

Figure 7. New definition of “gene.” The upper part of the figure shown here is 
a part of genomic element viewer in FANTOM DB. The numbers at the top of 
the figure indicate the base position in the genome. The squares indicate coding 
sequences (CDS) and the arrow shapes indicate exons, which does not have CDS. 
The black arrow lines indicate introns, the direction of the arrow indicates the 
direction of the strand. At the lower part of the figure, the gray boxes indicate 
TF, the light gray boxes between TFs indicate TD, and the black boxes indicate 
TUs.
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4.2.3. Functional RNA Research
Numerous reports of functional analysis on RNAs have been published 
in 2005, including studies stating that micro RNAs have important regula-
tory functions in malignant alterations and/or inhibition of translational 
initiation (32–36). Exploring the role and diversity of these numerous 
ncRNAs now constitutes a main challenge in transcription research.

4.2.3.1. ncRNA: One of the most amazing discoveries made after the 
genome wide transcriptome analysis, is the finding of large numbers of 
ncRNA. It had been said that there were only approximately 100 ncRNAs 
in mice; however, more than 23,000 ncRNAs (which is approximately 
43% of total genes) were found. These ncRNAs may have critical 
roles in gene regulation. Interestingly, approximately 60% of these 
ncRNAs form S/AS pairs (Figure 8). One notable observation was the 
conservation of promoter sequence between human and mice in these 

The Ratio of noncoding RNA in all RNAs
       and S/AS pairng 

Noncoding RNA
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Protein coding RNA
57%

Protein coding RNA
Noncoding RNA

S/AS pairing
22,879
76%

No S/AS pairing
7,273
24%N

S/AS pairing
no S/AS pairing

S/AS pairing
13,294
58%

No S/AS pairing
9,716
42%

S/AS pairing
no S/AS pairing

Noncoding RNAProtein coding RNA

A

B

Figure 8. The ratio of ncRNA in all RNA and the ratio of S/AS pairing. (A) In 
all RNA, except tRNA and hnRNA, protein-coding RNA consists of 53%, and 
ncRNA consists of 47%. (B) S/AS pair forming RNA consists of 76% in protein-
coding RNA and 58% in ncRNA.
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ncRNAs, although exons show no homology. This implies that ncRNA 
may have mechanism mediated by double-stranded RNA from S/AS 
pairings, and it is more important to know when and where they are 
expressed than the exon sequences. This data will be the basis of high-
throughput comparison analysis for transcription regulation in the evolu-
tion and differentiation in mammals.

4.2.3.2. S/AS RNA: An additionally striking discovery was the fact that 
almost 70% of all RNA forms S/AS pairs as shown in Table 2. Antisense 
transcription, which is a transcription from the opposite strand to the 
protein-coding strand, has captured scientists’ attention in biology 
because it may have a role in gene regulation involving RNA inter-
ference (RNAi) and gene silencing at the chromatin level by hybridiza-
tion to the sense strand of DNA. Previously, mammalian transcriptome 
analyses suggested that as much as approximately 20% of all transcripts 
may contribute to S/AS pairs (37,38), and the imprinted loci are gener-
ally known to display numerous S/AS transcripts, which are selectively 
expressed depending on parental chromosomal origin, such as the genus
locus (39). However, global genome-wide analysis in FANTOM3 dem-
onstrated that paired S/AS expression is not restricted to imprinted loci. 
This S/AS pairing phenomenon occurs universally in the whole genome, 
especially in genes that function in cell cycling, transporters, cell death, 
interleukin, cell structure, adhesion, phosphatase, and ubiquitination. 
S/AS pairs were found unevenly distributed across the genome; some 
chromosomes (4,17) showed a lower overall S/AS pair density. S/AS 
hybrids can also provide the templates for transcript cleavage involving 
the enzyme Dicer, which forms the molecular basis for RNAi. However, 
knockout or overexpression analysis showed that RNAi mechanism is 
not enough to explain the regulation of S/AS pairs. In FANTOM3, 
CAGE tag frequency data represents a de facto expression-profiling
approach, together with microarray analysis and S/AS pairs. That S/AS 
pairs were found in randomly primed CAGE libraries rather than in 
oligo-dT–primed CAGE libraries, suggests that some polyadenylate 
(polyA) minus RNA transcripts, or very long ncRNA transcripts are 
involved in S/AS pairs. Whether concordant or discordant RNAi regula-
tion reflects common or divergent regulation, it will require more detailed 
analysis in the near future.

Table 2. Number of individual TUs showing S/AS overlap.
Overlapping

cDNA, Tagor tag 
pair. Single or  TUs with overlapping

TU total no. of TUs multiple evidence Multiple evidence cDNA evidence

Coding TU 20,714 18,021 (87.0%) 13,711 (66.2%)  7,223 (34.9%)
Noncoding TU 22,839 13,401 (58.7%)  8,593 (37.6%)  5,296 (23.2%)
Total 43,553 31,422 (72.1%) 22,304 (51.2%) 12,519 (28.7%)
“Single or multiple evidence” means that at least one type of evidence was used for classification. “Multiple evidence” 
that at least two independent transcripts were detected. “Overlapping cDNA” indicates overlap using only the cDNA 
data set. Noncoding TUs do not have any coding cDNA in the cluster. Coding TUs may contain noncoding variants 
of coding transcripts.
Source: Reproduced with permission from Reference 8.
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4.2.4. Summary of FANTOM3
In the mammalian genome, there are twice as many protein-coding genes 
as compared with Drosophila melanogaster. In September 2005, the 
FANTOM consortium announced that 56,722 cDNAs with new cDNA 
sequences were discovered, in which more than 23,000 ncRNAs were 
included, except ribosomal RNA and transfer RNA. This discovery of 
an unexpectedly high number of ncRNAs dramatically changed the 
current knowledge of gene transcription, which is that protein is the final
functional substance coded by the genome. Together with the discovery 
of a novel RNA continent, this is the first step into uncharted territory. 
These ncRNAs, which were considered as “junk,” have now been shown 
to have important roles in the regulation of gene expression, and to 
implicitly contribute to the variance and rapid evolutionary change 
needed to establish the variation between species. If this is true, we will 
have to reconsider how genetic information is stored in the genome, and 
how this genetic information would be treated to regulate complicated 
mammalian developmental stages.

5. Future Prospects

5.1. New Technology Combinations

With the discoveries of ncRNAs and S/AS pairs transcripts, the underly-
ing concept of a gene needs to be revised, from the previous concept that 
genes are scattered in the genome like oases in a desert, to the new 
concept that “junk” RNA regions actually have functions. To understand 
the network of molecules connecting genes and phenotypes, the ncRNAs 
and S/AS pairing will give us critical information, and new research on 
new RNA mechanisms in gene regulation at various stages will be started. 
For exploring more complex transcriptomes, new types of microarrays 
and sequencing devices will be required. New genome science and 
postgenome science technologies are required to be high-throughput, 
but also low cost and faster. Two new powerful tools for future genome-
wide transcriptome analysis will be introduced in the following 
sections.

5.1.1. Tiling Arrays
Affymetrix, Inc. pioneered whole-genome tiling array technology to 
interrogate the genome at resolutions approaching every nucleotide. 
Tiling arrays have high-density oligonucleotide probes spanning the 
entire genome, and are a new type of microarray that gives large-scale 
data on transcriptional binding sites and splicing variants (40–43).

Uses of genome tiling arrays are:

1. Mapping transcription
2. Detection of transcription factors
3. Detection of transcripts bound by RNA-binding proteins
4. Detection of chromatin modification sites
5. Detection of DNA methylation sites
6. Detection of chromosomal origins of replications
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In 2004, the binding sites for several transcription factors were deter-
mined by using the approach of chromatin immunoprecipitation with 
tiling arrays (41,42). However, the tiling array itself has several shortcom-
ings, such as its inability to show precise gene structures or detect splicing 
junctions. On the other hand, FL-cDNA provides clear connections 
of how exons form a transcript; the combination of these techniques 
with additional knowledge will provide a more dynamic view of the 
transcriptome.

5.1.2. $1,000 Genome Technologies
In addition to the modification of microarrays, there are many more new 
high-throughput sequencing technologies. In 2004, the National Insti-
tutes of Health (NIH) published a request for applications for grants to 
develop low-cost genome-sequencing technologies. Sequencing an entire 
mammalian-sized genome currently costs between $10 million and $50 
million. However, in the next 10 years, this number can be reduced by 
four orders of magnitude, with the ultimate goal being a $1000 genome. 
To achieve this goal, nanopore or microchannel approaches need to be 
developed. Companies like Helicos Bioscience Corporation (http://www.
helicosbio.com/), VisiGen Biotechnologies (http://www.visigenbio.com) 
and 454 Life Sciences (http://www.454.com/), have developed revolution-
izing single-molecule sequencing devices to reach the $1000 human 
genome goal. Helicos is currently developing an instrument for individ-
ual molecule sequencing of DNA or RNA. The new technology uses 
modified bases, which are attached to fluorescent chemicals (fluoro-
phores) to visualize the synthesis process in sequencing reactions on a 
glass chip. When the laser light of a specific color falls upon a fluorophore,
it will emit an intense light of another color, which can be detected by 
using a sensitive digital camera connected to a microscope. VisiGen is 
engineering DNA polymerases and nucleotide triphosphates to function 
as direct molecular sensors of DNA base identity. With this technology, 
VisiGen can read 1 Mbp/s, enabling 3,600 Mbp to be read in 1 hour. Both 
technologies have neither PCR amplification nor a cloning step, which 
allows analyses with higher density, low cost, and high-throughput. 
454 Life Sciences technology has developed a sequencing system that 
involves a pyrosequencing method that has the potential to perform 
sequencing 100 times faster than conventional sequencing machines 
(44). This system can produce up to 20 million sequences per day, which 
means a whole genome can be read per run. Although these three 
technologies contain one shortage, which is that they cannot have 1 : 1 
correspondence between substrate clones and the sequence trace because 
they are based on shotgun sequencing methods, the throughput and 
efficiency is comparably high, and even larger genomes can be sequenced 
in a few days with a minimum of personnel. These new technologies 
will greatly contribute to high-throughput transcriptome analysis in the 
future.

5.2. Achieving Systematic Genome Network Analysis

The understanding of the genome network is the first goal of molecular 
biology; this will be a great challenge for all life science researchers. 
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Large-scale scientific projects comprehensively cover each molecule or 
functional target in all biological fields, and can thus be termed “hori-
zontal basic science.” So far, research accomplished by small groups 
focusing on individual biological phenomena can be termed “vertical 
point science.” The establishment of a genome structure and function 
database will drastically accelerate vertical point science; connecting 
phenotypes and genes will become much easier and faster. The horizon-
tal basic scientific projects have enabled vertical point research groups 
to avoid tedious and time consuming experiments, and instead allowed 
them to choose candidate genes for their target molecules from genome 
structure data and functional databases. The first milestone in integrating 
horizontal and vertical research is the comprehensive molecular under-
standing of the relationship between genes and phenotypes. Such rela-
tionships have included those between a disease and its causative genes, 
a drug’s effect and its target molecule. This complicated and extensive 
genome network needs to be analyzed. Vertical point research groups 
will work on the mechanisms of biological phenomena using the infor-
mation contained in the database created by horizontal basic science 
research groups. The results of this vertical point research will then be 
unified to form a genome network database. A systematic collaborative 
framework for combining vertical and horizontal research will facilitate 
genome network research. Groups analyzing each biological phenome-
non will have access to genome-wide screening; it will be as if a genome 
center were located within each small group. The key issue for life science 
research in the 21st century will be the establishment of this framework 
of collaborative research. Such collaboration will utilize and expand both 
the genome structure and function database and the genome network 
database (45).

6. Conclusions

The Mouse cDNA encyclopedia has revealed a novel RNA continent 
and showed a greater complexity than we expected. The result of more 
than 100,000 clones derived from transcriptome analysis opened the gate 
for a new RNA functional and proteome analysis research field. New 
technologies and databases will give us the keys to the mammalian 
mystery world.
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Hayashizaki). All the sequences (CAGE and cDNAs) are available 
through the DNA Data Bank of Japan (DDBJ) and other public 
databases. The FANTOM3 cDNAs are available through Yoshihide 
Hayashizaki (e-mail: yosihide@gsc.riken.jp)
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6
Dissecting Transcriptional 
Control Networks
Vijayalakshmi H. Nagaraj and Anirvan M. Sengupta

Summary

Reconstructing how transcriptional networks function involves figuring
out which promoters are affected by which transcription factors. Search-
ing for functional regulatory sites bound by particular transcription 
factors in a genome is therefore of great importance. The chapter dis-
cusses efforts at building classifiers that separate promoters targeted by 
particular transcription factors from those that are not. We start with 
simple sequence classifiers based on Support Vector Machines and go on 
to discuss how to integrate different kind of data into the analysis.

Key Words: Transcription; regulatory elements; motifs; support vector 
machines; probabilistic models; DNA sequence; evolution.

1. Introduction

Much of systems biology is dedicated to deciphering cellular regulatory 
circuits. Because transcriptional regulation often plays a crucial role in 
these circuits, analyzing genetic interactions representing transcriptional 
control is a fundamentally important enterprise. Although control of 
transcription is one of the main steps of regulation and is the focus of 
this chapter, it should be kept in mind that gene expression is controlled 
at many different levels. A recent surge of activity on siRNA and 
microRNA emphasizes this point.

Transcription initiation is often affected by the binding of transcription 
factors (TFs) to regulatory sites on the DNA in a sequence-specific
manner (1). The important problem of locating the binding sites for 
specific TFs, and thus identifying the genes they regulate, has attracted 
much attention from the bioinformatics community (2,3). Different 
methods have been employed for abstracting patterns, or “motifs,” from 
the sequences that bind particular TFs, and predictions have been made 
for likely binding sites in the genome of the organism under study. 
Factors regulating multiple genes often have binding motifs that are low 
in information content (4), making the task of prediction harder. Low 
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information content might arise from the binding site being too short 
(4–6 bases) or from allowing too much variability in the long sequence 
(10–25 bases).

Examples of such highly pleiotropic and functionally important pro-
teins range from global regulators in prokaryotes (e.g., CRP, LRP, 
FIS, IHF, H-NS, HU, and s factors (5) in E. coli) to many eukaryotic 
transcription factors important in metazoan development (e.g., Hox 
proteins [6]). Improving the ability of bioinformatic methods to dissect 
regulation of gene expression requires, among other things, enhanc-
ing our ability to identify regulatory sites on DNA and deepening our 
understanding of context-dependent interactions that govern function-
ality of the sites in vivo. In this chapter, we will discuss the development 
of classifiers of promoters that originate from our understanding of 
mechanistic models, as well as the development of the evolutionary 
process.

Ideally, analysis of transcriptional control networks could be reduced 
to a completely experimental question. Experimental approaches to 
locating binding sites on DNA (7,8), have uncovered numerous binding 
sites for various factors. Several databases have been devoted to such 
regulatory sites, like DPInteract (9) and RegulonDB (10) for E. coli,
SCPD for yeast (11), and TRANSFAC for many higher eukaryotic 
organisms (12). However, looking at these databases, it is obvious that 
for most pleiotropic TFs targeting a large number (100–1,000) of genes, 
the number of known sites is still a small fraction of all the functional 
sites. A high-throughput version of the chromatin immunoprecipitation 
method, commonly known as the “ChIP on chip,” has been introduced 
recently (13,14,15,16). In principle, this method locates binding sites 
throughout the genome. However, the resolution is limited to just several 
hundred bases.

One could use SELEX (17), as an in vitro method, to find the strongest 
binding sites (sequences close to the consensus) from a library consisting 
of randomly generated oligonucleotides. However, a TF can often func-
tion at binding sites that are far weaker than the consensus, as we will 
see (18). Therefore, to characterize the binding preferences of a TF, we 
need to identify many of these potential weak binding sites and to esti-
mate the parameters describing the statistical distribution of these 
sequences. The appropriate modification of the SELEX procedure, which 
is needed to achieve this goal, has been suggested (19), but has not yet 
been widely adopted by the community. Indeed, proper application of 
this procedure does improve our ability to describe motifs more accu-
rately (20).

Although much progress has been made in the experimental elucida-
tion of transcriptional control, the subject still seems to require much 
from computational analysis. As different kinds of data pile up, we need 
more and more clever ways of analyzing them, drawing upon our ability 
to combine different kinds of evidence.

The computational methods for binding site location can be broadly 
classified into supervised and unsupervised methods. Supervised algo-
rithms are trained on a set of binding sites identified directly by ex-
perimental measurements (9,21,22). Unsupervised algorithms identify 
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regulatory binding sites on the basis of statistical significance, i.e., appar-
ent overrepresentation of certain short sequences (23–30). We start our 
discussion with supervised learning tools and their performance.

2. Information Theoretic Weight Matrix and the Problem 
of Thresholds

Although it is common among biologists to refer to regulatory sequences 
by the best binding sequence (e.g., E-box or CACGTG being the sequence 
that binds Myc/Max), it is often noted that some of the bases in the 
sequence could depart from the “ideal” sequence and still give rise to 
functional regulatory elements. In these cases, one is often tempted to 
use more complex notation (CCNNNWWRGG for Mcm1 in yeast, with 
N = any nucleotide, W = A or T, R = A or G) trying to encompass the 
variability. However, for highly pleiotropic factors with “degenerate” 
(read extremely variable) binding motifs, it quickly becomes obvious that 
one needs a more quantitative way of dealing with the problem.

The widely used bioinformatic tool for quantitatively describing such 
motifs is the weight matrix method (23,31–36). The weight matrix is 

given by w
f
pi

i
α

α

α
= ⎛

⎝
⎞
⎠ln , where fia is the frequency of base a appearing

at position i in the example sequences, and pa is the background proba-
bility of finding the base a. It is used to define the “information score” 
(31,32,33)
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w
p
p

i
i

α
α

α
= ln ,

ˆ
0

where p̂ia is the observed fraction of the base a at site i of the sites in 
the training set, and p0

a is the fraction of the base a in the genomic 
background.

To use weight matrix method for locating putative binding sites in a 
genome, one needs to set a threshold, so that sequences with a score 
higher than the threshold are identified as candidate regulatory sites. 
However, optimal setting of the threshold is a nontrivial problem, which 
could be settled if one thinks carefully about the physical interpretation 
of the bioinformatic scores.

Information score Z(S) is often interpreted in terms of Gibbs free 
energy of TF binding to sequence S (35). Indeed, definition of w in terms 
of example sequences can be derived from maximization of the probabi-
lity of “observing” the set of examples S(a), (a = 1, .  .  .  , ns) provided that 
the probability of each sequence p(S(v)) is proportional to exp(Z(S(a))),
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which may be identified as a Boltzmann factor so that Z(S(a)) = −E(S(a))/
kBT. The binding (free) energy1 E(S) is then given by Equation (2) and 
the elements of the weight matrix wia are interpreted as (the negative 
of) the interaction energy contributed by base a at site i (in units of kBT)
(34,35).

The issue of finding a principled way of defining a score threshold for 
site classification gets resolved if we note that the correct expression for 
the probability of sequence S to be bound to a protein in thermodynamic 
equilibrium is given by

p S
n

n Ke e
f E Stf

tf
E S T E S TB B

( ) =
+

=
+

= ( ) −( )( ) ( )−( )κ μ κ μ1
1

, (1)

where m is the chemical potential set by factor concentration m =
kBT ln(ntf /K), ntf being the concentration of the TF and K being the equi-
librium constant of binding for a reference sequence for which E is set 
to zero. A sequence with binding energy well below the chemical poten-
tial is almost always bound to a factor. On the other hand, the sequence 
with energy well above the chemical potential is rarely bound and p(S)
is approximated by exp(−(E(S) − m)/kBT). The weight matrix procedure 
(34) assumes Boltzmann distribution of binding probability, and hence, 
corresponds to the latter limit. In contrast, Equation (1) provides a 
general description that correctly includes the saturation effect and 
introduces the binding threshold m physically set by TF concentration 
(see Figure 1). This expression for p(S), which is correct from the physi-

1 Occasionally, we will refer to the free energy of binding simply as “binding 
energy” for the sake of brevity. In biophysical literature, the commonly used 
notation for this quantity would be ΔG(S) rather than E(S).
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Figure 1. The distribution of binding energy, r(E), and the binding probability, 
f(E − m).
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cochemical point of view, can be used in a maximum likelihood frame-
work to obtain a more rigorous estimate for the binding energy and to 
provide a practically useful solution to the problem of classifier threshold 
choice as follows.

2.1. One-Class SVM out of Maximum Likelihood Method

Let us begin by briefly recapitulating the maximum likelihood problem 
that leads to an algorithm, with some additional assumptions, which not 
only provides a way of scoring candidate sequences but also gives us a 
natural threshold. To formulate a probabilty model for the the training 
set of binding sequences, consider a hypothetical SELEX experiment: a 
library of randomly generated sequences of length L is mixed into a 
solution with a known concentration of a given transcription factor. After 
reaching thermodynamic equilibrium, some of the DNA sequences 
bound to the factor are extracted from the solution. This gives us a set 
O containing ns sequences. The probability of observing the sequences 
comprising set O, but not other sequences is given by

e P f E S P f E S

P f E S

s
S O

S
S O

s

L = ( ) −( )[ ] − ′( ) −( )[ ]

≈ ( ) −( )[
∈
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′∉
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γ μ

1

]] ∫
∈

− ( ) −( )∏
S O

dE E f E
e

γ ρε μ
, (2)

where PS is the probability of a sequence in the random library being S,
and g is the (yet unknown) probability of a sequence bound to the factor 
being extracted and sequenced. The likelihood function L depends on 

e through E S S Si i
i

L

( ) = ⋅ ≡
==

∑∑ε ε α α
α 1

4

1

. We want to choose all the param-

eters in such a way as to maximize L.
In the case where the chemical potential m is so low that the probability 

of any sequence being bound is small, maximization of L reduces to the 
weight matrix construction (34). However, it is more appropriate to 
retain the saturation effect in the physical probability of binding and use 
m as a natural binding threshold.

In the limit, where the variation of the sequence-dependent part of 
the binding free energy is far larger than the temperature, the binding 
probability for a sequence S is either one or zero for most sequences, 
depending upon whether E(S) is less than or greater than m. As a result, 
the maximum likelihood method reduces to minimizing ΣS′PS′f(E(S′) −
m) = ∫dEre(E)q(m − E) = 4Ln(m) (where n(m) is the probability that a 
randomly chosen sequence has free energy below m), subject to the con-
straints E(S) ≤ m (for all S ∈ O).

Note that by minimizing v(m) we chose the threshold in such a way as 
to minimize expected number of false-positives without misclassifying 
the examples.

Provided that m is not too low, v(m) may be approximated by 
the integral of a Gaussian probability distribution with variance 

χ ε εα α
α

2 2

1

≡ −( )∑∑
=

p i i
i

L

, where ε εα α
α

i ip=∑ (4,9). Our problem, then, 
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reduces to minimization of c2 (because v(m) ≈ erf(m/c)), which is subject 
to constraints

E S S Si i
i

L

( ) = ⋅ ≡ ≤ = −
==

∑∑ε ε μα α
α 1

4

1

1 (3)

for every S ∈ O (4,37). The overall energy scale here is arbitrary, 
and we have set the fixed value of |m| to 1; hence we are determining 
e in units of m (which, more precisely, is the difference between the che m-
ical potential and the average energy). Minimizing a nonnegative 
definite quadratic form, subject to linear inequalities, is a well-developed 
technique known as quadratic programming (37). We call this 
the quadratic programming method for energy matrix estimation 
(QPMEME) (36).

This method is very similar to support vector machines (SVMs) (38). 
If we think of sequences S as vectors in a vector space V, and H = {x =
V|e · x = 1} being a hyperplane separating the binding sequences from 
the nonbinding ones, the main difference is that in conventional applica-
tions of SVMs, one is trying to separate between positive examples and 
negative examples with a separator surface of largest margin. In our case, 
we do not have particular nonbinding sequences, and, instead, we are 
trying to minimize the probability that any random sequence is identified
as a binding sequence, while still correctly classifying all of the positive 
examples. QPMEME turns out to be a one-class SVM (40–42), with 
K(S, S′) = ΣiaŜiapa

−1 Ŝ′ia , as the kernel that comes naturally from a maximum 
likelihood formulation and the assumption of approximately Gaussian 
distribution of the scores.

Conventional SVMs, with positive and negative training data, have 
been used in many problems (Figure 2) in bioinformatics (43–48). For 
systematic kernels for strings and other discrete structures, see the 
unpublished preprints by Haussler and by Watkins (Haussler D, 
Convolution Kernels on Discrete Stuctures, preprint UCSC-CRL-9910, 
1999, and Watkins C, Dynamic Alignment Kernels, technical report 
CSD-TR-98-11, 1999.). Some of these developments are described 
in a recently published book (49). One-class SVMs have been 
occasionally used in gene expression analysis (50). However, our 
derivation of a one-class SVM for the binding site classification problem 
is novel.

The classifying hyperplane in QPMEME is affected by only the mar-
ginal binding sites. The orientation of the hyperplane, as obtained from 
the weight matrix, depends on all the sequences. If the orientation is 
slightly wrong, then trying to include all the training sets among the 
predicted positives produce too many false-positives for the method. 
Making the threshold too tight, on the other hand, leaves out many 
biologically verified sites. ROC analysis (51) of the trade-off between 
false-positives and false-negatives shows this effect. We have compared 
the false-negative fraction versus the number of candidate sites found 
within non-ORF fraction of the E. coli K12 genome for the weight matrix 
and QPMEME methods and found QPMEME to be superior by ROC 
analysis (36).
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2.2. Extended QPMEME with Dinucleotide Terms

Emphasizing the relation of the scoring function used in devising a clas-
sifier (for site location) with the physical properties of protein–DNA 
interaction is very useful because the relationship provides clues to 
improving the classifiers. For example, the linear classifier corresponds 
to the “independent nucleotide approximation,” where different posi-
tions i contribute additively to the binding energy. More generally, the 
sequence specific interaction E(S) can be parametrized by

E S S J S Si i i
i

L

ij i j
i j

L

( ) = + +
== ==

∑∑ ∑∑ε α α
α

αβ α β
α β1

4

1 1

4

1
,

,,

,. . . (4)

where Sa
i characterizes the sequence Sa

i = 1, if the i-th base is a
and Sa

i = 0 otherwise. eia is the interaction energy with the nucleotide 
a at position i = 1, .  .  .  , L of the DNA string (35), and Jij,ab is the 

A Effect of Transcription Factor concentration on binding of sequences
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Sequence
Space Sequence
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B Comparison of Weight Matrix and QPMEME on setting the threshold
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and the location from marginal examples

Figure 2. Geometric interpretation of the classification problem. The dark circles 
are the true negatives. The light circles are the true positives. The filled light 
circles make the training set.
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pair dependent (a at position i and b at j) correction. The independent 

nucleotide approximation E S Si i i
i

L

( ) =
==

∑∑ ε α α
α 1

4

1

, which truncates Equa-

tion 4 at the first term appears to be adequate for some, but not for all, 
TFs (35,52,53). The nearest neighbor dinucleotide terms (Jij,ab with
j = i + 1) are expected to be particularly important whenever there is 
strong DNA deformation due to protein binding.

We can, once again, formulate the problem in terms of minimizing 
variance, which now has an additional contribution from Jii+1,ab,
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which is subject to linear inequalities E(S(a)) ≤ m < 0 for each a , .  .  .  , ns

and linear equalities Σapaeia = ΣapaJii+1,ab = Σbpb(Jii+1,ab) = 0 for each i.
This is, once more, a solvable quadratic programming problem that 
leads to a generalized kernel of the form K(S,S′) = Ŝ pii

L
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This method was tested (54) on data generated from all-atom model- 

based calculations (55) for several transcription factors, some of which 
deform DNA seriously2 upon binding. We compared results from models 
assuming independent base approximation as well as from those with 
dinucleotide terms. They were trained with 200 randomly chosen 
sequences with binding free energy within 5 kcal/mol of that of the 
consensus. Extended QPMEME clearly outperformed other methods 
(54).

This dinucleotide model has, formally, about four times as many 
parameters as the model based on independent bases. Estimating these 
parameters requires a larger number of training sequences. Currently, 
for many of the DNA-deforming transcription factors, the number of 
known sites available is too few so that we risk overfitting (see the book 
by Hastie et al. (55) for discussion of general statistical isssues related to 
overfitting). Clearly, we need to experimentally generate many more 
binding sequences, and it will be useful if our study on synthetic data 
could give us some idea about the number of sites required. We have, 
therefore, studied how the performance of extended QPMEME depends 
on the size of the training dataset. For example, we estimate that approxi-
mately 60–70 TBP-binding sites would be good enough to build a reason-
able dinucleotide model. This is because only few of the dinucleotide 
terms are important in practice.

The SVMs and probabilistic approaches for classifying promoters 
could be developed further in several directions. One could design clas-
sifiers based on better estimation of the fraction of binding sites among 
random sequences, by going beyond the Gaussian approximation. There 
are several ways to do this, the two most promising being large deviation 
methods and some efficient exact evaluation based on dynamic 

2 If you are wondering why we do not test our method on real data, wait until 
the next paragraph.
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programming. Another desirable feature would be to handle gracefully 
a small number of false-positives included in the training set. To have a 
procedure that is robust to such contamination, we have to go beyond 
the “all-or-nothing” approximation. We could add a linear penalty func-
tion max(0, E(S) − m) for each known example S to the quadratic 
function to be optimized, which could be solved within the quadratic 
programming framework (38). Alternatively, we could generalize logistic 
regression (57) for one-class problems.

3. Combining Heterogeneous Data: Going 
Beyond Sequence

Predicting regulatory binding sites in eukaryotes is complicated. Many 
effects other than the inherent affinity of a protein for a particular DNA 
sequence affects the occupancy, as well as functionality, of a site. The use 
of additional information often would reduce the false-positive rates of 
conventional computational methods. For example, analysis of gene 
expression using DNA microarrays provides genome-wide profiles of the 
genes controlled by the presence or absence of a specific transcription 
factor. However, whether a change in the level of transcription of a spe-
cific gene is caused by the transcription factor acting directly at the pro-
moter of the gene, or through regulation of other transcription factors 
working at the promoter, could not be determined solely from steady-
state microarray data. Combining microarray expression data and site 
preference data overcomes limitations of predictions based solely on 
either kind of information.

As mentioned before, tools that combine different types of data in a 
principled fashion to predict regulatory interactions are gaining impor-
tance, given the limitations of drawing conclusions from a single form of 
data. Traditionally, one often sets up filters for each kind of data, gener-
ates sets of candidates, and then examines the overlap of the sets to find
out the most likely candidates. This procedure, although simple, suffers 
from two problems. The first is that it is too conservative and likely to 
miss many genuine candidates. The second is that the stringency of each 
of the filters is somewhat arbitrary. The first problem is sometimes dealt 
with by designing metaclassifiers, which are classifiers that combine the 
output of multiple classifiers to make a decision (58). The strategies for 
combining data could be as simple as the majority decision or could be 
a complicated rule that is learned based on some online training. However, 
even with a sophisticated meta-classifier, one is still stuck with the arbi-
trariness of the underlying classifiers.

Here is a simple procedure for combining variables that could be used 
to rank genes. If we have n variables, xig, i = 1 . .  .  n, each of which scores 
a gene g for belonging to a category C (say regulated in a particular way). 
For simplicity, let us say that large values of xig indicates the gene is likely 
to be in that particular category. We calculate the product of cumulative 
probabilities pg = ΠiProbi(x > xig). The number pg being small is to be 
considered an indication of the gene being a good candidate for belong-
ing to C. How small is small enough? We could see how small pg gets if 
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we use scrambled data. Let us permute the index of each variable, take 
products, and generate ordered sets of pg value. We take the gene that 
has the lowest significant pg values for the unscrambled dataset. The kth
pg value (in ascending order) is considered significant if it is lower than 
the kth pg value generated by a certain number of randomly scrambled 
datasets. The significance level is set by the number of scrambled datasets 
used.

Some possible problems with this method are as follows. Is case one 
of the probability models is wrong, and for some reason gives extremely 
small probabilities for certain genes, then this variable will dominate 
everything. One way out of this is to use empirical probabilities based 
on ranking: number of genes with xi larger than xig divided by total 
number of genes. One still needs to be careful. If, for some reason, xi has
very little predictive value, then the procedure throws in random noise. 
We will need some method of feature selection for deciding which vari-
able not to use.

We faced this problem while trying to identify the targets of the a1/a2
repressor complex involved in repressing haploid specific genes (59) in 
the yeast genome. In the analysis of expression profile using microarrays, 
when comparing the presence or absence of a specific transcription 
factor, one is forced to ask whether a change in the level of transcription 
of a specific gene is caused by the transcription factor acting directly at 
the promoter of the gene or through regulation of other transcription 
factors working at the promoter. To address this problem we devised a 
computational method that combines microarray expression and site 
preference data (60). We utilized the microarray data obtained in Galitski 
et al. (61) and the mutational study in Jin et al. (62). The mutational study 
allows us to score sequences away from the consensus, in terms of their 
ability to bind the repressor. We compute a binding p-value for promot-
ers of genes, based on what fraction of genes have promoters with stron-
ger sites than the best site in the particular promoter. We also defined a 
score that combines two components: one penalizing difference of 
expression between a and a, the other rewarding overexpression in hap-
loids over diploids. An expression p-value of a gene represents the frac-
tion of genes with better or equal score compared with that associated 
with the particular gene.

Instead of setting separate, and somewhat arbitrary, cutoffs on the 
binding and the expression p-values, and then considering the genes that 
look significant by either criterion, we decided to look for correlated 
significance in the way described above. We calculated a combined 
p-value for a gene by taking the product of the two p-values, which gives 
us the fraction of random unregulated genes that would be better on 
both counts compared with this gene. If this number is low, then we might 
say the gene is a good candidate for being a direct regulatory target. The 
appropriate threshold on the combined p-value is drawn by permuted 
combination of binding p-values and expression p-values, as previously 
discussed (60). For the sake of completeness, we point out parallel work 
on the mating-type system from the Johnson lab (63).

The early days of microarray data analysis were heavily influenced by 
clustering. It’s no wonder that some of the early papers that integrated 
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sequence analysis with expression data relied crucially on clustering. For 
example, in a pioneering paper, Tavazoie et al. clustered expression data 
and used multiple local sequence alignment algorithms on the promoter 
regions of the coclustered genes to discover regulatory motifs (24). This 
approach has been further refined by using Bayesian networks to incor-
porate additional constraints regarding relative positions and the orien-
tations of the motifs (63). Another approach has been to break the genes 
into modules and perform module assignments and motif searches at the 
same time via an expectation maximization algorithm (as opposed to 
clustering first and finding motifs later) (65). Another method that does 
not utilize clustering is a regression model-based analysis to locate 
“words” in the promoter that correlates with modulation of expression 
(27). Most of these approaches attack the difficult problem of what to 
do when relatively little is known about the regulatory system and 
sequence recognition by the TFs. Consequently, these investigators 
develop pattern recognition algorithms that are essentially unsupervised. 
On the other hand, the approach discussed in the chapter takes advan-
tage of knowledge about the biological system, and uses that informa-
tion, combined with expression analysis, to identify potential target sites. 
The loss of generality resulting from such an approach is more than 
compensated for by the improved predictive power.

4. Combining Phylogenetic Footprinting and Motif Search

Comparison across species to discover regulatory elements is a powerful 
tool (28,29,66–68) and commonly goes by the name of phylogenetic 
footprinting (see the review by Martha Bulyk (69)). It is turning out to 
be a popular bioinformatic method for finding or verifying binding sites 
of transcription factors. The power of this procedure was tested by com-
paring the genomes of several Saccharomyces species involved in the 
study by Cliften et al. (70) and that by Kellis et al. (70). In its extreme 
version, phylogenetic footprinting demands perfect conservation of 
words of a certain length (say, hexamers) among multiple species (70). 
However, some of the functional sites are not so well preserved and 
occasionally may even be lost in some of the related species. We would 
therefore need some less stringent way of measuring conservation.

4.1. Evolutionary Comparison of the HO Promoter

One of the targets of a1/a2, the HO gene, codes for an endonuclease 
involved in mating-type switch. In contrast to most other yeast promot-
ers, the HO promoter is very complex, with multiple binding sites for 
different TFs that is reminiscent of developmental promoters in meta-
zoans. The HO promoter has 10 putative a1/a2 binding sites (72), which 
we will call HO(1–10). Several of these predicted a1/a2 binding sites 
have low affinity for the repressor complex. These sites, on their own, 
show very weak repression of transcription in a diploid. This raises the 
question of whether these sites have a functional role in the context of 
the HO promoter. One approach to address this question is to determine 
if these sites are conserved in related yeast species. Significant
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conservation of these sequences would suggest that they have a func-
tional role in the cell.

We obtained the HO promoters from S. cerevisiae, S. bayanus,
S. mikatae, S. paradoxus and S. kudriavzevii (70,71) and performed a 
segmented multiple sequence alignment (Figure 3) using the DIALIGN 
2 (73–75). A measure of the significance for the alignment of the sites 
was then constructed by taking the alignment scores, provided by 
DIALIGN, and averaging over each base pair in the site. The background 
probability of the alignment scores was calculated by a similar analysis 
on two other neighboring regions of the genome (18).

The background distribution of average scores fits an exponential 
function, as can be seen in Figure 4. The average scores of many of the 
HO sites are in the tail of the distribution, and 5 of the 10 a1/a2 sites 
appeared to be well conserved (as judged by 1% significance level) 
among the different species. As might be expected, several of the strong 
repressor sites, such as HO(3), HO(4), and HO(10), are highly conserved 
among the different species. In contrast, HO(1), HO(2), and HO(5), 
which were weak repressor sites on their own, showed significantly less 
sequence conservation. Interestingly, the two other weak repressor sites, 
HO(7) and HO(8), are strongly conserved among the different yeasts. In 
fact, these sites appear to be more highly conserved than HO(4), HO(6), 
and HO(9), which are all strong a1/a2 repressor sites. The fact that 
HO(7) and HO(8) are highly conserved strongly suggests that they have 
a functional role in regulating the HO promoter, even though they func-
tion only very weakly on their own. For examples of alignments of the 
sites from these categories, see Figure 5. Mutational analysis of these sites 
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Figure 3. Saccharomyces phylogenetic tree. The species names that are under-
lined correspond to those sequenced by the group at Washington University, 
St. Louis, and were used in a study (69). From http://www.genome.wustl.edu/
projects/yeast/.
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Figure 5. Conservation of the a1/a2 sites in the HO promoter among four 
species of yeast (Saccharomyces sensu stricto). Aligned sequences for HO(10), 
HO(7), and HO(2). The numbers below indicate the degree of conservation 
according to DIALIGN2.
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in the context of the HO promoter shows that these sites do have a role 
in regulating transcription. These experiments indicate that apparently 
weak sites, which may not be identified by conventional algorithms, can 
have an important role in transcriptional regulation (18).

The scoring system for alignment used in this study, based on the 
program DIALIGN, starts with a null model of independent sequences. 
This is not very accurate, given the structure of the phylogenetic tree. A 
more appropriate model would treat, say, a certain degree of similarity 
between S. cerevisiae and S. bayanus as more significant than the same 
degree of similarity between S. cerevisiae and S. paradoxus. It is, indeed, 
possible to have a probability model that integrates phylogeny into motif 
detection. However, discussion of this topic would take us too far 
afield.

5. Conclusion

In summary, for locating regulatory elements in genomes, it is not enough 
to rank the candidate sites; we need to classify them. We therefore need 
ways to set cutoffs in a principled manner. This chapter discusses com-
putational approaches for that purpose. We specifically focus on combin-
ing sequence analysis, phylogenetic comparison, and microarray data 
analysis in a principled fashion in terms of cogent probability models. In 
traditional machine learning, one often puts all the domain-specific intu-
ition into the choice of the feature space, but utilizes very standard clas-
sifiers on the feature space. We, on the other hand, intend to use biophysics 
and evolutionary modeling to construct appropriate classifying surfaces 
in these feature spaces (Figure 6). In biological problems, large numbers 
of verified negatives are often unavailable, making one-class classifiers
(meaning those that could be trained on positive examples only) very 
useful. The grand challenge is to patch together the lessons learned from 
these studies to construct more detailed models of important submod-
ules of the transcriptional network.

Figure 6. One-class classifiers in the general feature spaces of combined 
biological data.
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Reconstruction and Structural 
Analysis of Metabolic and 
Regulatory Networks
Hong-wu Ma, Marcio Rosa da Silva, Ji-Bin Sun, Bharani Kumar, 
and An-Ping Zeng

Summary

Networks of interacting cellular components carry out the essential func-
tions in living cells. Therefore, understanding the evolution and design 
principles of such complex networks is a central issue of systems biology. 
In recent years, structural analysis methods based on graph theory have 
revealed several intriguing features of such networks. In this chapter, we 
describe some of these structural analysis methods and show their appli-
cation in analysis of biological networks, specifically metabolic and tran-
scriptional regulatory networks (TRNs). We first explain the methods 
used for reconstruction of biological networks, and then compare the 
pros and cons of the different methods. It will be shown how graph 
theory–based methods can help to find the organization principle(s) of 
the networks, such as the power law degree distribution, the bow-tie 
connectivity structure, etc. Furthermore, we present an integrated 
network that includes the metabolite–protein (transcription factor) 
interaction to link the regulatory network with the metabolic network. 
This integrated network can provide more insights into the interaction 
patterns of cellular regulation.

Key Words: Metabolic network; regulatory network; network recon-
struction; Scale-free network; bow tie; network centrality; systems 
biology; graph theory.

1. Introduction

It is recognized that the interactions between cellular components rather 
than the components themselves determine the behavior of a complex 
biological system. Therefore, understanding the complex interactions in 
various cellular processes in terms of large-scale biological networks is 
the central issue in systems biology (1–11). The rapid development in 
genome sequencing and other high-throughput experimental technolo-
gies makes it possible to reconstruct such networks at the whole-system 
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level (2,4,5,12,13). Structural analysis of these biological networks can 
help us find certain general organization principles of biological systems. 
In this chapter, the methods for reconstruction of biological networks 
and several structural features of these network are described, with 
emphasis on metabolic networks and TRNs for which relatively reliable 
and complete data are available. We first illustrate the major approaches 
and available databases for the reconstruction of genome-scale meta-
bolic networks and regulatory networks. We then introduce the methods 
based on graph theory for the structural and functional analysis of these 
networks. The different structures of the two types of networks are dis-
cussed, and an integrated network that includes the metabolite–protein 
interaction, as well as the metabolic reaction and the transcriptional 
regulation, is presented. This integrated network is more suitable for 
studying the functional organization of the biological system.

2. Methods for Reconstruction of Metabolic Networks and 
Regulatory Networks

2.1. Genome-Based Metabolic Network Reconstruction

It is well known that different organisms may have very different meta-
bolic ability in uptaking various substrates or synthesizing diverse meta-
bolic products because of the existence of different enzymes (pathways) 
in their metabolic networks. The availability of the fully sequenced 
genomes and the sequence similarity–based gene function annotation 
methods make it possible to reconstruct organism-specific metabolic 
networks based on the genome (14–16). The reconstruction method is 
depicted in Figure 1. First, all the open reading frames (ORFs) in the 

Enzymes

EC 1.1.1.3
EC 1.1.1.6
EC 1.1.1.17

..............

R0004
R0007
R0100

..............

Metabolic network

Literature

Enzyme databases

Annotated genome

Reactions

Experiments

Figure 1. Processes for the reconstruction of metabolic networks. The high-
throughput method (shown by the solid arrows) directly reconstructs an 
organism-specific metabolic network from enzyme or genome databases. New 
enzymes or reactions from biological experiments or literature (shown by the 
dashed arrows) can be added to obtain high-quality metabolic networks.
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newly sequenced genome are identified, and sequence similarity searches 
are carried out to find the similar genes in the gene or protein databases. 
If an ORF is found to be similar to an enzyme gene in another organism, 
it may also be annotated as that enzyme. This sequence similarity–based 
knowledge transfer between different organisms allows us to obtain a 
list of enzymes existing in the metabolic network of a newly sequenced 
organism directly from the genome sequence, even though few or no 
biochemical experiments have been done to investigate the metabolic 
enzymes in that organism.

Modern sequencing technologies are generating a large quantity of 
DNA sequences, first in unfinished form or with low genome coverage 
because of the time-consuming, and thus limiting, steps of finishing and 
annotation. As of March 2006, only one third of the genome sequencing 
projects documented by the National Center for Biotechnology Informa-
tion had been completed. Moreover, the available methods for genome 
annotation often encounter difficulties when dealing with unfinished,
error-containing genomic sequences. To accelerate the use of genomic 
data from a large number of ongoing sequencing projects for studying 
cellular metabolism, Sun and Zeng (17) recently developed a homology-
based algorithm called IdentiCS to identify protein-coding sequences, 
and thus to reconstruct a strain-specific metabolic network directly from 
unfinished raw genomic data. Compared with the conventional method, 
which requires more than 8-fold coverage of genome sequences, this 
method needs only a 3-4-fold coverage. The method was originally devel-
oped to analyze unfinished bacteria genomes, and has now been extended 
to eukaryotic genomes.

Currently, many enzyme nomenclature databases such as KEGG (14), 
BRENDA (18), and ExPASy (19) have included all the corresponding 
genes in different organisms for each enzyme in these databases. This 
provides a high-throughput way for metabolic network reconstruction. 
The lists of enzymes for all the organisms included in an enzyme data-
base can be obtained at one time. It should be noted that the enzyme–
gene relationships in these enzyme databases are also directly or 
indirectly from the sequence similarity–based gene annotation.

After obtaining an enzyme list for a specific organism, the next step 
would be to find all the reactions catalyzed by these enzymes. The 
enzyme–reaction relationships are often not simple one–one relation-
ships. One enzyme may catalyze several different reactions. For example, 
the enzyme fatty-acid synthase (Enzyme Commission [EC] Number 
2.3.1.85) catalyzes approximately 30 reactions in the fatty acid synthesis 
pathway. Unfortunately, in most enzyme databases only the main reac-
tion catalyzed is listed for each enzyme; for some enzymes with wide 
substrate activity, a general compound name such as “an aldehyde” is 
used. Therefore, some reactions that occur in reality may not be included 
in the reconstructed metabolic network. As far as we know, the KEGG 
LIGAND database is the most complete metabolic reaction database 
(20), including more than 6,000 enzyme-catalyzed or non–enzyme-
catalyzed biochemical reactions. Most of the known reactions catalyzed 
by an enzyme are listed, thus allowing for reconstruction of more com-
plete metabolic networks.
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2.2. High-Quality Metabolic Network Reconstruction

The aforementioned sequence similarity–based, high-throughput re-
construction method is necessary for comparative analysis of large-scale 
metabolic networks because it allows an automatic approach to re-
constructing networks for many organisms at the same time. However, 
there is a trade-off between high productivity and the high quality. For 
example, the networks reconstructed in such a high-throughput manner 
may be not complete, for the following reasons:

1. There are some non–enzyme-catalyzed reactions that occur spon-
taneously in a metabolic network. These reactions should be added to 
the metabolic network to avoid artificial missing links in the reconstructed 
metabolic network.

2. Enzyme Commission numbers are often used in linking an annotated 
gene with one or more metabolic reactions. However, only chemically 
well-characterized enzymes are given an EC number by the Interna-
tional Union of Biochemistry and Molecular Biology (IUBMB). For this 
reason, many enzymes are often found to have an incomplete EC number 
(e.g., 1.2.-.-) in the genome annotation database. It is necessary to develop 
a set of new IDs, or to just use enzyme names, for these unclear enzymes 
to correctly map a reaction to a gene.

3. Many enzymes for which the reactions catalyzed have been experi-
mentally determined are not found in any fully sequenced genomes. 
Among the 4,223 enzymes in KEGG database, 2,572 are not found to be 
coded by any gene in any fully sequenced organism. The reason for this 
may be that the functions of a large part of the genes in a genome are 
unknown. For this reason, Karp (21) recently called for an Enzyme 
Genomics Initiative to find coding sequences for these enzymes.

The poor quality of the reconstructed network is made evident by 
comparing the metabolic networks for the same organism from a variety 
of databases. Even for Escherichia coli, one of the best-studied organ-
isms, there are discrepancies between the networks from different data-
bases such as KEGG, ExPASy, and EcoCyc (22). Therefore, human 
curation to improve the quality of the reconstructed network is necessary 
for any further biological function analysis. New reactions with bio-
chemical and physiological evidences should be added to the network. 
Literature survey is needed to verify or correct the gene–enzyme rela-
tionship obtained from sequence similarity search. Reactions catalyzed 
by unclear enzymes should be clarified and added to the network. Unfor-
tunately, these network quality improvement processes are relatively 
time consuming. Thus, for only a small number of organisms, such as 
E. coli and Saccharomyces cerevisiae (13,23–25), are the high quality 
metabolic networks available.

The quality of the reconstructed network can also be improved by 
comparative genomics. The IdentiCS tool offered a direct visualization 
of the differences among the metabolic network (pathways) of closely 
related organisms (17). Figure 2 shows a comparison of citrate acid cycle 
(TCA cycle) among five Aspergillus species. The differences among 
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Reconstruction and Structural Analysis of Bionetworks 129

closely related organisms should be further evaluated by bio informatics
analysis or literature review to confirm the genomic annotation.

Genomic annotation efforts generally cannot annotate more than 50% 
of all coding sequences into a functional category. This is partially 
because of our limited knowledge on some metabolic pathways. Incom-
pleteness of annotation leads to an incomplete reconstruction of meta-
bolic network. Sometimes, a physiological phenotype (for instance, that 
a bacteria can live exclusively on a carbon source or produce some 
metabolites) may be known, but the genetic nature of the reac-tions is 
only partially known. In such cases, tools from comparative genomics 
may give useful indications. STRING from the European Molecular 
Biology Laboratory (http://string.embl.de) (26) is an excellent site that 
integrates many comparative genomics analysis tools, such as genomic 
neighborhood, phylogenetic/cooccurrence pattern, gene fusion events, 
coexpression pattern, etc., in a unified scoring system; thus, it is very 
useful to study the function of unknown genes and to find the potential 
missing links for a better reconstruction of the metabolic network.

2.3. Reconstruction of the TRN

The reconstructed metabolic network of a specific organism represents 
a static picture of the possible reactions in it. However, not all of these 
reactions occur in the cell at the same time. For example, the enzymes 
in a pathway for uptaking a specific substrate are induced only when the 
substrate is present in the growth media. In prokaryotes, the presence 
or the amount of an enzyme in the cell is mainly controlled by the TRN. 
The interactions in the TRN are between transcription factors and target 
genes. Responding to environmental changes, a transcription factor can 
bind to or dissociate from the binding site at the upstream region of its 
target genes, thus activating or repressing the expression of the target 
genes. Therefore, it would be beneficial to reconstruct the TRN for 
better understanding the dynamic regulation of metabolic networks.

The reconstruction of genome-scale TRN is not as easy a task as the 
sequence similarity–based, high-throughput metabolic network recon-
struction (27). As shown in Figure 3, the regulatory relationship B1-A1 
in organism 1 often cannot be directly transferred to organism 2 (B2-A2) 
because the short sequence of the binding site at the upstream of gene 
A2, rather than the sequence of A2 itself, determines if B2 can bind and 
regulate it. Although A2 has high similarity to A1, it may have very dif-
ferent binding site, and thus cannot be bound by B2. Because of this, the 
genome-scale TRNs are often reconstructed by systematically collecting 
regulatory interaction information from literature. Therefore, genome-
scale TRNs are available only for certain well-studied organisms, such as 
E. coli, Bacillus subtilis, and S. cerevisiae (28–31). Several databases have 
been developed for storage and management of the curated regulatory 
interaction information from literature. Among them, RegulonDB (28) 
is the most prominent database for E. coli regulatory network, DBTBS 
(32) contains most of the known regulatory interactions in B. subtilis,
and Prodoric (33) aims to include the regulatory interactions for pro-
karyotes; however, at this stage, the information in the database is mainly 
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for E. coli, B. subtilis, and Pseudomonas aeruginosa. TRANSFAC (34) 
is a database on eukaryotic (mainly yeast) transcription factors and their 
genomic binding sites. From these databases, we can extract the regula-
tory relationship between genes, and thus reconstruct the regulatory 
network. However, this process is often not straightforward because the 
databases often try to keep all the related information by using different 
files in different formats. For example, to obtain the regulatory relation-
ships between genes from RegulonDB we have to extract information 
from six different files: product_table.dat (relationships between a gene 
and its coded polypeptide product), polyp_prot_link.dat (relationships 
between polypeptides and proteins), conformation_table.dat (the modi-
fied protein conformation), regulatory_interaction.dat (which promoter 
is regulated by which activated protein), transcription_unit.dat (relation-
ships between transcription units and promoters), and trans_gene_link.
dat (genes in a transcription unit). Therefore, to obtain the regulatory 
network in term of gene–gene regulation, we need to start from the 
interaction data between proteins and promoters in the file “regula-
tory_interaction.dat,” and, based on the information in other files, to find
the regulatory genes and regulated genes.

Because of the human curation feature of these databases, the regula-
tory information in one database is often not very complete. Therefore, 
integrating information from different databases is important to obtain 
more complete networks. Recently, Ma et al. (35) have produced an 
extended regulatory network of E. coli based on the information from 
RegulonDB, EcoCyc, and the work from Shen-Orr et al. (36). Certain 
new regulatory interactions are also added to the network directly from 
recently published literature. The resulting network includes 2,724 regu-
latory interactions among 1,278 genes. Surprisingly, only approximately 
one third of the interactions are common in all three data sources. Based 
on this extended network, both RegulonDB and EcoCyc have updated 
their databases (37,38).

A1

Enzyme TF

B1

A2 B2

m2

m1

+

+

?

Figure 3. Comparison of the reconstruction of the metabolic network and regu-
latory networks. A1–A2 and B1–B2 are orthologous gene pairs between the two 
organisms. A1 is known to code for an enzyme that catalyzes a metabolic reaction 
m1 → m2. This enzyme function can be transferred to A2 from the orthologous 
relationship. B1 codes for a TF that activates A1. From this orthologous relation-
ship, B2 may also be annotated as the same TF. However, it is not clear whether 
the regulatory interaction between A2 and B2 exists in organism 2.
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2.4. The Integrated Network

In the aforementioned regulatory network of E. coli, approximately one 
third of the regulated genes code for metabolic enzymes. It is well known 
that changing gene expression level by transcriptional regulation is an 
important way to control the metabolic fluxes. On the other hand, the 
effect of a transcription factor on its target gene is also affected by the 
concentration of certain metabolites, which can bind to it. Therefore, for 
better understanding of cellular regulation, specifically the metabolic 
regulation, it is necessary to integrate the different interactions to obtain 
the whole picture. Recently, several papers have been published on 
integrating various cellular interactions for network structure or func-
tional analysis (39,40). An ongoing study is carried out in our group to 
collect all the available interactions in E. coli, including transcriptional 
regu lation (between transcription factors and their target genes), met-
abolic reactions (between metabolites), metabolite–protein interaction 
(between metabolites and transcription factors), and protein–protein 
interactions (including signal transduction, mainly the two-component 
systems). Currently, the partially finished integrated network (using only 
genes as nodes) consists of 6,497 interactions between 1,549 genes. This 
integrated network allows us to obtain new findings, which cannot be 
revealed by analysis of any individual network. An example of revealed 
feedback regulations through metabolite–protein interactions will be 
discussed later in section 4.4.

3. Graph Representation of Biological Networks

There are two components in metabolic networks: reactions and metab-
olites. Therefore, a direct graph representation of a metabolic network 
should be a hypergraph including two types of nodes, which represent 
reactions and metabolites, respectively (also called a two-node network) 
(11). However, to facilitate structural analysis, a two-node network is 
often converted to two types of one-node network: metabolite graph 
and reaction graph. In a metabolite graph, the nodes represent 
metabolites, and the links are reactions. Correspondingly, in a reaction 
graph the nodes are reactions, and two reactions are linked if a metabolite 
is the substrate of one reaction and the product of another. There are 
reversible reactions and irreversible reactions in metabolic networks. 
Correspondingly, the links in the graph can be directed (called arcs in 
graph theory) or undirected (called edges). In most cases, the metabolic 
network should be regarded as a directed graph in structural analysis. It 
should be mentioned that graph representation is a simplified way to 
represent the metabolic network. Some information in the reaction 
equations may be missing in the graph. A reaction often has several links 
in the graph (sometimes in very different parts) because most reactions 
have multiple substrates and products. On the other hand, one link in 
the graph may represent several different reactions. For example, reac-
tion A + B = C will be represented as two links, A–C and B–C, in the 
metabolite graph. Two reactions, A = C and B = C, will also be repre-
sented by the same two links. Therefore, in the metabolite graph, we 
cannot distinguish which reactions lead to the links. Therefore, a reverse 
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step to map a link to its corresponding reaction(s) is required when 
providing biological interpretation for the results from graph analysis of 
a metabolic network.

An important issue in graph representation of a metabolic network is 
how to deal with the currency metabolites, such as H2O, CO2, ATP, etc. 
(5). Currency metabolites are normally used as carriers for transferring 
electrons and certain functional groups (phosphate group, amino group, 
one carbon unit, methyl group, etc.). When considering the connections 
through currency metabolites, structural analysis often produces biologi-
cally meaningless results. For example, in the glycolysis pathway, the 
path length (number of reaction steps in the pathway) from glucose to 
pyruvate should be 9 in terms of biochemistry. However, if ATP and 
ADP are considered as nodes in the network, then the path length 
between glucose and pyruvate becomes only 2 (the first reaction uses 
glucose and produces ADP, whereas the last reaction consumes ADP 
and produces pyruvate). This calculation of path length is obviously 
biologically not meaningful. Different approaches have been proposed 
to address this problem. A simple way is to exclude the top-ranked 
metabolites based on their connection degree (number of links con-
nected with a metabolite) (41). The problem is that certain primary 
metabolites, such as pyruvate, may also have high degrees of connection. 
Moreover, currency metabolites cannot be defined, per se, by com-
pounds, but should be defined according to the reaction. For example, 
glutamate (GLU) and 2-oxoglutarate (AKG) are currency metabolites 
for transferring amino groups in many reactions, but they are primary 
metabolites in the following reaction:

AKG + NH3 + NADPH = GLU + NADP+ + H2O

The connections through them should be considered. The same situa-
tions are for NADH, NAD+, ATP, etc. Another problem is for reactions 
such as this:

AcORN(Acetyl-ornithine) + GLU =
ORN(Ornithine) + AcGLU(Acetylglutamate).

The acetyl group is transferred between GLU and ORN in this reac-
tion. Only the connections AcORN–ORN and GLU–AcGLU should be 
included; AcORN–AcGLU and GLU–ORN should be excluded. Oth-
erwise the path length from GLU to ORN will be 1, and this is not in 
accordance with the pathway in real biochemistry.

From the previous discussion, we can see that it is difficult to remove 
the connections through currency metabolites automatically using a 
program. Therefore, we manually checked the reactions that appear in 
the KEGG metabolic maps and added corresponding connections one 
by one (5). In this way, the reaction–connection relationships can be 
more accurately obtained and used to generate metabolite graphs from 
the lists of reactions of different organisms. As an example, Figure 4 
depicts the two graphs (with and without connections through currency 
metabolites) for the reconstructed metabolic network of Streptococcus
pneumonia. It can be seen that the one without currency metabolites is 
more realistic and more amenable for analysis. In contrast, the true 
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network structure in the graph with currency metabolites is masked by 
the large number of links through currency metabolites. Therefore, the 
removal of connections through currency metabolites is an essential step 
in drawing biologically meaningful conclusions from graph analysis of 
metabolic networks.

In a recent study, Croes et al. (42) presented a weighted graph approach 
to find biologically meaningful pathways using graph analysis. In the 
weighted graph, each compound in the network is assigned a weight 
equal to the number of reactions in which it participates. Then path 
finding is performed by searching for one or more paths with the lowest 
weight. They found that the correspondence between the computed and 
biologically annotated pathways approached 85% in the weighted graph. 
The main advantage of this method is that it can be performed auto-
matically by a program based on the reaction list. Therefore, the very 
time-consuming process of manual examination of currency metabolites 
is not necessary.

Arita (43,44) proposed a different approach, called atomic reconstruc-
tion of metabolism, for graph representation of metabolic networks. In 
this approach, the atomic flow in a metabolic reaction is traced, and a 
substrate is connected only to the product(s) that contains at least one 
atom from it. An example is shown here for the following reaction:

ATP + D-Glucose = ADP + D-Glucose 6-phosphate

In this reaction, the link from D-glucose to ADP is not included in the 
graph because there is no atomic flow between these two metabolites. 
However, the other three links (ATP–ADP, ATP–D-glucose 6-phos-
phate, and D-glucose–D-glucose 6-phosphate) are all included in the 
resulting graph. Therefore, although this approach can avoid certain 
connections through currency metabolites, there are still biologically 
meaningless connections in the graph.

The graph representation of TRNs is relatively simple because there 
is only one type of node: genes. All the links in the TRN are directed 
because all the regulatory interactions are from a regulatory gene to a 
regulated gene. However, autoregulatory loops exist in TRN because 

Figure 4. The metabolite graph representation of metabolic networks of Strep-
tococcus pneumonia. The left network includes the connections through currency 
metabolites, and the right one does not. Links with arrow represent irreversible 
reactions, and those without arrow represent reversible reactions.
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many transcriptional factors (TFs) regulate their own gene expression. 
In TRN, a regulatory link can be active, repressed, or dual. In certain 
situations, such as network motif analysis, the different types of inter-
actions should be considered.

For the integrated network, the graph representation is quite complex 
because it comprises different types of interactions involving different 
cellular components, such as genes, proteins, and metabolites. To reduce 
the complexity of graph representation, we have developed a way to 
represent the integrated network by a simple graph in which the nodes 
represent the genes and the multicolor edges represent various inter-
actions. All the links in the network are directed, and an edge between 
two nodes x and y (genes) represents the interactions: transcription regu-
lation if gene x codes for a transcription factor that regulates gene y,
metabolic reaction if the genes x and y encode for enzymes catalyzing 
successive metabolic reactions, and metabolite protein interaction if the 
gene x encodes for an enzyme that catalyzes a reaction producing metabo-
lite m as a co-factor for a transcription factor coded by gene y. The result-
ing graph for the integrated network of E. coli is illustrated in Figure 5.

4. Structural Analysis of Biological Networks

4.1. Degree Distribution and Average Path Length

The connection degree of a node is defined as the number of links con-
nected with it. Several studies have shown that the degree distribution 

Transcriptional regulation

Metabolic reaction

Metabolic protein
interaction

Figure 5. An integrated molecular network of E. coli comprising transcriptional 
regulation (dark gray edges), metabolic reaction (medium gray edges), and 
metabolic protein interaction (light gray).
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among all the nodes follow a power law relationship in metabolic 
networks and regulatory networks, as well as many other complex 
networks (11,45–50). This kind of network is called a scale-free network 
(48). The few high-degree nodes dominate the network structure and are 
called the hubs of the network. Most of the nodes are connected through 
the hubs by a relatively short path. The hub metabolites in the metabolic 
network include several metabolites in glycolysis pathway (glycerate-3-
phosphate, pyruvate, D-fructose-6-phosphate, and D-glyceraldehyde-3-
phosphate), pentose phosphate pathway (D-ribose-5-phosphate and 
D-xylulose-5-phosphate), and TCA cycle derivatives (acetyl-CoA, L-
glutamate, and L-aspartate) (5). In regulatory networks, the hubs include 
several important global regulators such as CRP, RpoS, FNR, IHF, 
ArcA, etc (35,51). These results indicate that structurally important 
nodes also play functionally central roles.

In a directed network, the path length from node A to node B is 
defined as the number of steps in the shortest paths from A to B. 
Average path length (APL) of a network is the average of the path 
lengths for all connected pairs of nodes in the network (52). After 
excluding the currency metabolites, the APLs calculated for metabolic 
networks of various organisms are shown in Figure 6. Generally, APL 
tends to increase with the network scale. More interestingly, quantitative 
differences were found among the three domains of organisms; namely, 
that the metabolic networks of eukaryotes and archaea generally have 
a longer APL than those of bacteria. The average APL values for net-
works of these three domains of organisms are 9.57, 8.50, and 7.22, 
respectively. This result indicates that there are true structure differ-
ences between the metabolic networks of different organisms. This is in 
opposition to the result of Jeong et al. (11), who found that the APLs 
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Figure 6. The calculated APL for the metabolic networks of fully sequenced 
organisms. A clear difference between path lengths of metabolic networks of the 
three domains of organisms can be seen.
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for the metabolic networks of the 43 organisms studied were constant 
when the connections through currency metabolites were included.

The network structural differences are the result of a long evolution-
ary process. To explore this, we constructed evolutionary trees based on 
the reaction contents of metabolic networks for 82 fully sequenced 
organisms (53). We found that the major results from phylogenetic trees 
based on metabolic networks are surprisingly in good agreement with 
the tree based on 16S recombinant RNAs, despite the prevalence of 
horizontal transfer of metabolic genes among organisms, confirming the 
three-domain classification and the close relationship between eukary-
otes and archaea at the level of metabolic networks. This indicates that 
the gene transfer events are constrained by some system-level organiza-
tion principle(s).

4.2. Network Centrality

A method to analyze networks is to evaluate the location of the nodes 
in the network. Measuring node location in the network is finding the 
centrality of this node. The measurement of centrality helps determine 
the importance of a node in the network. Three different centrality mea-
surements have been widely used in network analysis: degree centrality, 
closeness centrality, and betweenness centrality (47,54,55). The degree 
centrality of a node is defined as the fraction of nodes that are connected 
to each node. So:

C n
d

N
D

n( ) =
− 1

, (1)

where di is the number of nodes connected to node n and N is the number 
of nodes in the network. Therefore in degree centrality, only the directly 
linked nodes are considered. In contrast, the closeness centrality of a 
node considers not only the directly connected nodes, but also the nodes 
connected with it through other nodes. The term “closeness centrality” 
was first introduced by Sabidussi (56). The closeness centrality of node 
x (C(x)) is defined as follows:
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N
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,
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where d(x,y) is the distance between node x and node y; U is the set of 
all nodes; d̄ is the average distance between x and the other nodes. Based 
on closeness centrality, the most central nodes are the ones with the 
shortest paths to other nodes in the network. They form the core part of 
the whole network, whereas the periphery nodes have long paths to 
other nodes. Therefore it is better than degree centrality to show the 
overall location of the nodes in the whole network because some nodes 
in the periphery part of the network may also have a high degree central-
ity. The difference between the two measurements can be seen by the 
simple network in Figure 7. This is a typical social network called kite
network, in which nodes represent people and links mean that the two 
people know each other. The centralities for all the nodes in this network 

CIT_Ch07.indd 136CIT_Ch07.indd   136 5/22/2007 3:38:19 PM5/22/2007   3:38:19 PM



Reconstruction and Structural Analysis of Bionetworks 137

are listed in Table 1. It can be seen that J is the node with the highest 
degree centrality, whereas D and I have the highest closeness centrality, 
although they have fewer connections than J.

Metabolic networks are directed networks. Therefore, the average 
distance from a node to all other connected nodes is different from that 
of other nodes to that node. To address this, we can define output close-
ness centrality when d(x,y) in eq. (2) is considered as the path length 
from x to y and input closeness centrality when d(x,y) is the path length 
from y to x. The overall location of a node in the network can be 
described by the overall closeness centrality, which is defined as the 
reciprocal of the average of the mean input distance and the mean output 
distance. The 10 most central metabolites in the E. coli metabolic network 
based on these different centrality measures are listed in Table 2. Pyru-
vate is both the input and output center of the network. Eight of these 
central metabolites (pyruvate, acetyl-CoA, phosphoenolpyruvate [PEP], 
glyceraldehyde 3-phosphate [G3P], 2-dehydro-3-deoxy-6-phospho-D-
gluconate [KDPG], malate, fumarate, and citrate) are in the central 

Figure 7. Kite network to show the different measures of centrality.

Table 1. Different centrality measures for the nodes in the Kite network
in Figure 7.
Betweenness centrality Closeness centrality Degree centrality

C 0.388889 D 0.642857 J 0.666667
D 0.231481 I 0.642857 D 0.555556
I 0.231481 J 0.6 I 0.555556
B 0.222222 C 0.6 F 0.444444
J 0.101852 F 0.529412 G 0.444444
F 0.023148 G 0.529412 H 0.333333
G 0.023148 H 0.5 E 0.333333
H 0 E 0.5 C 0.333333
E 0 B 0.428571 B 0.222222
A 0 A 0.310345 A 0.111111
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metabolism, namely, the glycolysis and TCA cycle pathway. All other 
central metabolites are directly connected with one or more of these 
eight metabolites. For example, serine and cysteine can be directly con-
verted to pyruvate by irreversible reactions; thus, they are output centers, 
but not input centers. It should also be mentioned that not all of these 
central metabolites have a higher connection degree. For example, KDPG 
is an important metabolic intermediate in the Entner–Doudoroff 
pathway, and it is identified as a central metabolite by all the closeness 
centrality measures. However, because it links with only two metabolites 
(pyruvate and G3P), it is not recognized as a central metabolite by 
degree centrality.

The betweenness centrality of a node is defined as the fraction of the 
number of the shortest paths that go through the node. The betweenness 
centralities for the nodes in the kite network are also shown in Table 1. 
Interestingly, node C is the one with the highest betweenness centrality, 
even though it has few direct connections (less than the average in the 
network). In many ways, node C has one of the best locations in the 
network—it is between two important constituencies. It plays a “broker” 
role in the network. Without it, A and B would be cut off from the rest 
of the network. Actually betweenness centrality has been used for 
decomposition of metabolic network into small subnetworks (57).

4.3. Network Global Connectivity: The “Bow-Tie” Structure

The scale-free property revealed by the power-law connection degree 
distribution is a local property of network. It cannot tell us anything 
about the global network structure. For example, both networks in Figure 
8 show a power-law degree distribution. However, the left network is a 
fully connected one, whereas the right one consists of several discon-
nected subgraphs. To investigate the global network connectivity, new 
method(s) and parameter(s) are needed. In graph theory, two concepts 
have been widely used to describe the network connectivity: strongly 
connected component and weakly connected component (52). A subset 
of vertices in a network is called a strongly connected component if from 
every vertex of the subset we can reach every other vertex belonging to 
the same subset through a directed pathway. If the direction of links is 

Table 2. The most central metabolites in the metabolic network of E. coli.
Output center  Input center Overall Center

Metabolite Mean distance Metabolite Mean distance Metabolite Mean distance

Pyruvate 4.2198 Pyruvate 4.663 Pyruvate 4.4414
KDPG 4.6007 Acetyl-CoA 4.9011 Acetyl-CoA 4.7582
Acetyl-CoA 4.6154 Malate 4.9011 Malate 4.8864
G3P 4.696 Acetate 4.9194 KDPG 4.9286
Serine 4.7473 Formate 4.9853 Acetate 4.978
Acetaldehyde 4.7729 Fumarate 5.1978 Acetaldehyde 5.0311
DR5P 4.8608 KDPG 5.2564 G3P 5.0641
Cystine 4.8645 Citrate 5.2821 PEP 5.2106
Malate 4.8718 Acetaldehyde 5.2894 HOAKG 5.2491
PEP 4.8938 Methylglyoxal 5.3516 Methylglyoxal 5.2766
Abbreviations: DR5P, 2-Deoxy-D-ribose 5-phosphate; G3P, Glyceraldehyde 3-phosphate; HOAKG, D-4-Hydroxy-
2-oxoglutarate.
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not important (consider the network to be undirected), such a subset is 
called a weakly connected component (52). Because metabolic networks 
are directed networks, we first calculate the strongly connected compo-
nents in the network. The size distribution of these components in the 
metabolic network of E. coli is shown in Figure 9. It can be seen that the 
size distribution is very uneven. Most components are very small, whereas 
the largest component is very big (includes 10 times more nodes than 
the second largest component). This largest component is called the 
“giant strong component” (GSC). Next, we analyze the connectivity 
between the GSC and other parts of the network. A subset in which all 
the metabolites can be converted to metabolites in the GSC and a subset 

Figure 8. Two simple network examples to show the limitation of connection 
degree distribution. Both networks show power law degree distributions, but 
have apparently different network connectivity.
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Figure 9. The size distribution of the strongly connected components in the 
metabolic network of E. coli.
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in which all of the metabolites can be produced from metabolites in the 
GSC were identified. The two subsets are called the IN and OUT subsets. 
All the other metabolites that are not connected with metabolites in the 
GSC form an isolated subset. In this way, we obtained the global con-
nectivity structure of metabolic networks, as shown in Figure 10. This 
connectivity structure was also found in the metabolic networks of all 
other organisms studied. A similar connectivity structure has also been 
found by Broder et al. (58) in the Web page graph in which Web pages 
represent nodes and hyperlinks represent links. They called it a “bow-tie” 
connectivity structure. The discovery of the bow-tie structure in different 
kinds of networks implies that it is a common structure in large-scale 
networks. Organization as a bow tie may be important for the complex 
system to be robust under variable and undetermined environments 
(59,60).

The GSC is the most complex, and the core part of a metabolic 
network. We found that the GSC follows a similar power-law connection 
degree distribution to the whole network. Furthermore, the APL of the 
whole network was found to have a linear relationship with that of the 
GSC. This implies that the APL of the entire network is mainly deter-
mined by that of the GSC. Because of the large scale, it is often difficult
to achieve a comprehensive understanding of the biological features of 
genome-based metabolic networks. A way to reduce the whole network 
is desired to make the network more amenable to functional analysis (7). 
The bow-tie connectivity structure of the metabolic network represents 
a step forward in this direction. For example, understanding and manipu-
lating the distribution and control of metabolic fluxes over the metabolic 
network are key steps in metabolic engineering of organisms and therapy 
of certain metabolic diseases. However, for large-scale metabolic net-
works, the estimation of metabolic flux and control can be very difficult
or even impossible. However, the most important part of the network, 

IN OUT

Isolated Subset

Giant Strong

Component

Figure 10. A cartoon show of the bow-tie connectivity structure of metabolic 
networks.
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GSC, normally contains less than one third of the nodes of the entire 
network, although it preserves the main features of the whole network. 
Large-scale metabolic networks are more feasible for analysis of flux
distribution and identification of all the possible elementary flux modes 
or extreme pathways. The distribution of metabolic fluxes is mainly con-
trolled by regulating the flux ratio at branch points. Most of the branch 
points are in the GSC. Therefore, one may focus on the GSC when study-
ing the flux distribution and its regulation in metabolic network. This can 
largely simplify the analysis process.

4.4. Regulatory Network: The Multilayer Acyclic Structure

As described in the previous section, the metabolic networks are con-
nected through a bow-tie structure. It would be interesting to investigate 
whether this structure exists in other biological networks. Surprisingly, 
we found that there are no strongly connected components in the 
extended regulatory network of E. coli (35). This means that there are 
no regulatory cycles (e.g., gene A regulates gene B and gene B also 
regulates gene A through another path) in the TRN of E. coli. Or, in 
other words, the flow of the regulatory signal in the network is one-way 
only, and there is no feedback. This implies an acyclic structure of the 
E. coli TRN in which the nodes can be placed in different layers accord-
ing to their depth in the regulatory cascade. To identify such a structure, 
we rearranged the nodes in the following way:

1. Nodes that do not regulate other nodes (output connection degree is 
0 when the autoregulatory loops are not considered) were assigned 
to layer 1 (the lowest layer).

2. We removed all the nodes already assigned to layer 1, and from the 
remaining network identified a set of nodes whose output connection 
degree is 0 and assigned them to layer 2.

3. We repeated step 2 to remove nodes that have been already assigned 
to a layer and identified the nodes with 0 output degree to make a 
new layer, until all the nodes were assigned to different layers.

Using this method, a 9-layer hierarchical structure of the E. coli regula-
tory network was uncovered, as shown in Figure 11. All the regulatory 
links in this graph are downward, and there is no link between operons 
in the same layer (except the autoregulatory loops). The genes at the 
bottom layers are the target genes, which are regulated only by other 
genes. Most of the global regulator genes such as crp, rpoS, ihf, cspA, hns,
rpoN, fi s, and rpoE are at the top layers of the hierarchy (36,61). However, 
this does not mean a global regulator requires more steps (through other, 
more specific regulators) to regulate a gene at the bottom layer. Actually, 
there are many shortcuts between the top global regulators and the 
genes at the bottom. The APL of the whole network is only 1.85, meaning 
most of the regulatory signal can be transferred to a target gene in less 
than 2 steps. This is important for the cell to respond to environmental 
perturbations in a fast and efficient way. In many cases, a global regulator 
regulates a target gene in the bottom layer together with a specific
regulator, which is also regulated by the global regulator, forming a 

CIT_Ch07.indd 141CIT_Ch07.indd   141 5/22/2007 3:38:19 PM5/22/2007   3:38:19 PM



142 Ma et al.

feed-forward loop, which is the most important network motif in the 
regulatory network (36).

The multilayer hierarchical structure of the E. coli TRN implies that 
no feedback regulation exists at transcription level. This raises the ques-
tion of why the TRNs of these organisms possess such an acyclic hierar-
chical structure. A possible biological explanation for the existence of 
this hierarchical structure is that the interactions in TRN are between 
proteins and genes. Only after a regulating gene has been transcribed, 
translated, and, eventually, further modified by cofactors or other proteins, 
can it regulate the target gene. A feedback from the regulated gene at 
transcriptional level may delay the process for the target gene to access 
a desired expression level in a new environment. Feedback control may 
be mainly through other interactions (e.g., metabolite and protein inter-
action) at posttranscriptional level, rather than through transcriptional 
interactions between proteins and genes. For example, a gene at the 
bottom layer may code for a metabolic enzyme, the product of which can 
bind to a regulator, which in turn regulates its expression. In this case, 
the feedback is through metabolite–protein interaction to change the 
activity of the transcription factor, and then to affect the expression of 
the regulated gene. With the help of the integrated network, we really 
identified many feedbacks through metabolite–protein interaction. For 
example, the transcription factor TreR regulates two genes, treB and treC,
in the trehalose-degradation pathway. One of the regulated genes, treB,

crp

rpoS

phoB

argP

cspE

soxR

cspA

rpoE

fis

ihf

dnaAcytR

hnS rpoN

Figure 11. The multilayer hierarchical structure of the extended E. coli tran-
scriptional regulatory network.
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located at the lowest layer in the multilayer hierarchical structure, codes 
for an enzyme in trehalose PTS transport system that catalyzes the fol-
lowing reaction:

PEP + trehalose = Trehalose-6-phosphate + Pyruvate

The metabolic product trehalose-6-phosphate (T6P) is a cofactor for 
TreR. Thus, through the interaction between T6P and TreR, we obtain a 
feedback link from treB to TreR.

5. Conclusions

One of the goals of systems biology is to develop theoretical models to 
describe and predict cellular behavior at the whole-system level. The 
structural and functional analysis of genome-based metabolic networks 
described in this chapter represents one step toward this goal. The mac-
roscopic structures of the biological networks (scale-free, bow-tie, multi-
layer hierarchy), which were uncovered by analysis of the network as a 
whole, represent certain system-level principles governing the organiza-
tion of interacting cellular components. Although these structural prop-
erties still give only a static picture of the whole system, they can serve 
as a basis or blueprint for analyzing the dynamic behavior of the network 
(e.g., information and material flows), which is the next necessary and 
more demanding step in network analysis.
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8
Cross-Species Comparison Using 

Expression Data
Gaëlle Lelandais and Stéphane Le Crom

Summary

Molecular evolution, which is classically assessed by the comparison of 
individual proteins or genes between species, can now be studied by 
comparing coexpressed functional groups of genes. This approach, which 
better reflects the functional constraints on the evolution of organisms, 
can exploit the large amount of data generated by overall, genome-wide 
expression analyses. To optimize cross-species comparison, particular 
caution must be used in the selection of expression data, using, for 
example, the most related experimental conditions between species. In 
addition, defining gene pairs having interspecies correspondence is also 
a critical step that can create misleading relations between genes and 
that could benefit from international annotation efforts like the Gene 
Ontology (GO) Consortium.

In this chapter, we describe methodologies based on global approaches 
or gene-centered methods that can be used to answer precise biological 
questions. Finally, through a set of examples, we show that expression 
profile comparison between species can help to discover functional 
annotation for unknown genes and improve orthology links between 
organisms.

Key Words: Microarrays; transcriptome; cross-species comparison; gene 
ontology; orthologs; paralogs.

1. Introduction

Comparing genomic properties of different species at varying evolution-
ary distances is a powerful approach to studying biological and evolu-
tionary principles. Because entire genome sequences are available for a 
large number of organisms (1), gene and protein sequences have received 
the highest attention as the basis for investigating evolutionary changes 
(2). It has been valuable to develop methodologies based on comparative 
analyses for identifying coding and functional noncoding sequences, as 
well as sequences that are unique for a given organism. But evolution 
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involves biological variations at many levels, and one of the next major 
steps is to understand how the genes interact to perform particular bio-
logical processes. High-throughput genomic technologies, particularly 
DNA microarray methods (3,4), monitor gene expression levels on a 
genomic scale. An increasing number of studies use DNA microarrays 
for comprehensive investigations of genetic network architecture, and 
this approach lends itself to comparative analysis of two or more model 
organisms (5). Distinguishing the similar from the dissimilar in large-
scale data sets promises to improve fundamental understanding of 
both the universality and the specialization of molecular biological 
mechanisms.

2. Chapter Outline

This chapter is organized as follows. In section 3, we describe the minimal 
information required to compare expression data between species. In 
section 4, available methodologies are presented. This part focuses mainly 
on the yMGV and MiCoViTo tools developed respectively by Marc 
et al. (6) and Lelandais et al. (7). Finally in section 5, several applications 
that illustrate the potential of cross-species comparisons using expres-
sion data are discussed.

3. Information Required to Compare Expression 
Between Species

3.1. Choosing Expression Data

The accumulation of microarray data from multiple species provides new 
opportunities to i) discover how the genes interact to perform specific
biological process and ii) study the evolution of properties of expression 
networks. Recent works have initiated comparative analyses of expres-
sion profiles from different organisms (see [5,8–12] for review). Results 
presented in these studies provide a lot of evolutionary information that 
substantially depends on the choice of expression data from the many 
available. In this section, an overview of two different approaches is 
presented: comparison via a compendium of expression profiles and 
comparison of a specific biological process.

3.1.1. Cross-Species Comparison Via a Compendium of 
Expression Profi les
A compendium of expression profiles is an expression matrix composed 
of a large number of DNA microarray experiments (generally more than 
100). Introduced by Hughes et al. (13), the compendium approach has 
been used to assign potential functions to previously unknown genes by 
comparing their expression profiles to those of genes with known func-
tions. Indeed, genes that encode proteins that participate in the same 
pathway or are part of the same protein complex often exhibit expres-
sion profiles that are correlated under a large number of various condi-
tions in DNA microarray experiments. However, similar expression 
patterns do not necessary imply that genes are functionally related. For 
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instance, apparent coexpression can occur by chance, as a result of the 
noisiness of microarray data. The statistical justification for the compen-
dium approach is that with a thousand data points, it is highly unlikely 
to observe a significant correlation between two expression patterns by 
chance (14). In that respect, several studies have attempted to consoli-
date the compendium approach by identifying gene pairs exhibiting 
coexpression in multiple species and across a large number of arrays in 
each species (8–10). These gene pairs are likely to be functionally related, 
thanks to the evolutionary conservation of their coexpression.

3.1.2. Cross-Species Comparison of a Specifi c Biological Process
In spite of very interesting results that demonstrate the potential of 
cross-species comparisons using expression data, the global approach 
that consists of the integration of large sets of unrelated microarray data 
prevents a precise comparison of the sets of genes involved in a particu-
lar cellular process. In this context, cross-species comparisons based on 
selected experiments that are as close as possible between species appear 
to be a more promising approach. Comparing expression results in 
various organisms that are subject to the same environmental changes is 
an alternative way to bring the most interesting answers on how con-
served regulatory networks are. This principle was first pursued by Alter 
et al. (12), who compared time points during the cell cycle between yeast 
and human. Cross-species comparison of a specific biological process 
allows the separation of the expression profiles into those common to 
both species, as well as those specific for one or the other dataset (11). 
But a critical assessment of the obtained results relies on the evaluation 
of background noise associated to microarray data (15). When working 
with microarray data coming from different sources, a challenging part 
of the work is to be sure that the comparison is feasible. Until 2005, 
doubts persisted on how reproducible and comparable micro array results 
were, and studies coming from various laboratories and platforms found 
low correlation between expression data (see [16,17] for review). Three 
papers published in the May 2005 issue of Nature Methods (18–20) show 
that there is a high laboratory effect that takes place when analyzing 
microarray data that comes from various sources. It stresses the impor-
tance of the quality of the interspecies biological data if one wishes to 
carry out comparative transcriptomic analyses. The standardization of 
microarray protocols is of fundamental importance.

3.1.3. Standards for Microarray Data
To reduce the experimental variability coming from various collaborators, 
it is necessary to use the same standard protocols for sample preparation, 
RNA extraction, labeling, and hybridization. Concerning the raw data 
pretreatment, it is also essential to apply the same procedure for each 
experiment’s results. To ensure the best comparative analysis of gene 
expression data coming from different laboratories, all associated param-
eters (protocols, pretreatment steps, statistical analyses, etc.) have to be 
clearly available, along with the measured expression values. In this con-
text, a great international effort has been carried out by the Micro array 
Gene Expression Data Society supporting a standard, called Minimal 
Information About a Microarray Experiment, to enclose all descriptions 
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of an experiment necessary to understand how data have been processed 
(21). Therefore, the standardization of microarray pro tocols, which is now 
accessible to numerous research groups, and the DNA sequence data from 
closely related species (22,23), led to a rapid accumulation of expression 
data that was directly comparable between organisms.

3.2. Defining Gene Pairs Having Interspecies Correspondence

Once expression data have been chosen for each species to be compared, 
coherent pairs of related genes, one in each organism, have to be defined.
These gene pairs are needed to connect expression results between 
species, and thus compare properties of the transcriptional programs. To 
define gene pairs having interspecies correspondence, several types of 
information can be used. In particular, we can use sequence conservation 
or coherent functional gene annotation.

3.2.1. Sequence Conservation
Sequence comparisons provide insights into evolutionary relationships 
between species (2). These comparisons allow the detection of sequence 
conservation and give an overview of the components potentially con-
served or species-specific in an organism. In particular, candidate orthol-
ogous gene pairs are now routinely identified between entirely sequenced 
genomes (24). Orthology defines the relationship between genes in dif-
ferent species that originate from a single gene in the last common 
ancestor of these species (25). Such gene pairs are most likely to share 
the same function and are good starting points to compare expression 
data across species.

3.2.1.1. How to Find Orthologous Gene Pairs: Detection of orthologous 
gene pairs is an important, but challenging, problem. Because orthologs, 
by definition, are related through evolutionary history, they should ideally 
be identified using phylogenetic methods (26). But construction of phy-
logenetic trees needs several steps (search for similar sequences, multiple 
alignments, etc.), which are poorly automated and require large resources 
of computing power to be systematically applied to entire genomes. 
Therefore, several automated ortholog detection methods have been 
developed and are now available (INPARANOID, OrthoMCL, etc.) 
(26,27). They are based on initial candidate ortholog identification using 
all-versus-all sequence comparisons between two genomes. To summa-
rize, these algorithms start the detection of orthologs with calculation of 
all pairwise similarity scores between the complete sets of protein 
sequences from the two genomes. This is generally done with the BLAST 
program (28). Then, different approaches can be used. One of the most 
popular consists in detecting sequence pairs with mutually best hits (29). 
The idea is that if the sequences are orthologs, they should score higher 
with each other than with any other sequences. These sequences are 
called “reciprocal best hit” and their identification is finally followed by 
different methods (clustering and resolution of overlapping groups) to 
refine the output list of orthologs.

3.2.1.2. Orthology, Paralogy, and Homology: The concept of homologs 
is strictly defined as genes coming from a common evolutionary ancestor 
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(25) (Figure 1A). Homologs are further classified as orthologs (two genes 
that predate speciation and that code functionally equivalent proteins 
that arise from evolution; see previous paragraph) and paralogs (genes 
which have arisen by duplication events and whose function generally 
have diverted from the original ancestor). Thus, two genes similar to each 
other at the sequence level can be related by different evolutionary 
history, but in addition to orthology and paralogy relationships, they can 
also result from convergent evolution, where two genes, previously unre-
lated, became similarly independently. This illustrates the complexity of 
orthology analyses (30), and that is the reason why ortholog detection 
methods often identify more than one putative ortholog in one or both 
species. In this case, the interspecies-related genes have one-to-many or 
many-to-many relationships (26) (Figure 1B). Defining interspecies 
gene pairs using sequence information could sometimes lead to complex 
situations, especially when species are separated by a long evolutionary 
distance.

3.2.2. Coherent Functional Gene Annotation
Another way to define gene pair associations is to use functional gene 
annotation. It could help to solve complex similarity links between genes 

A B

Sp

Dp

One-to-many relationships

Many-to-many relationships

B2B1A1

Figure 1. Orthology and paralogy definitions. Orthologs and paralogs are two 
types of homologous sequences. Orthology describes the relationship genes in 
different species that derive from a common ancestor. Paralogy describes the 
relationships between homologous genes within a single species that diverged by 
gene duplication. (A) After a speciation event (Sp), characters A and B were 
fixed in the two different species, creating orthologous relationships between 
genes A1 and B1/B2. Next, a duplication event (Dp) created two paralogous 
genes B1 and B2 in the second species. (B) Often, genetic rearrangements mask 
phylogenetic links between genes, leading to complex relationships between 
orthologous genes. For instance, we can observe one-to-many relationships when 
one gene in the first organism (light gray circle) gave multiple orthologs in the 
second organism (dark gray circles), or many-to-many relationships when multi-
ple links exist between orthologous genes.
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by separating neofunctionalization from subfunctionalization phenome-
nan (31). In this context, the GO Consortium (32) has made a great effort 
to standardize gene annotation across species. GO is a structural network 
consisting of defined terms and relationships between them that describe 
three attributes of gene products: molecular function, biological process, 
and cellular components (33). Functional annotation is therefore a prom-
ising tool, but is still facing some shortcomings that could prevent its use 
to define precise interorganism gene pairs. In particular, functional anno-
tations are comparatively incomplete because of the way they are built 
(manually curated) and of mass data gathering on a very small number 
of model organisms and genes (34). Annotation bias is then found in 
databases according to researcher interests for some scientific domains. 
Nevertheless, since the beginning of the GO project, the number of 
organism groups participating in the consortium, as well as the number 
of genes precisely annotated, has prodigiously grown every year (35). 
This should lead to the definition of more and more relevant interorgan-
ism gene associations.

4. Available Tools and Methodologies

In the previous sections, we have presented how to choose expression 
data and how to define gene pairs to compare gene expression between 
species. In the following, we will take a closer look at the methodologies 
available. There are two main approaches to perform gene expression 
comparison between species. The first group of methodologies is based 
on mostly using a large dataset without any a priori on the genes to be 
found, which is in contrast to the second group of tools, which is based 
on a “gene-centered” concept.

4.1. Global Approaches

To ensure interspecies comparison using expression data, one of the first
methods to be used was to work with large datasets using various experi-
mental conditions. As introduced in Section 3, the first compendium 
dataset (13) was done in Saccharomyces cerevisiae using a set of 300 
microarray experiments. This compendium was available in a database, 
which allowed one to gather experimental results; for example, to 
compare expression profiles to one obtained in another organism. This 
methodology was reinforced by the work done by the laboratory of 
Jürgh Bähler on gene expression in the fission yeast Schizosaccharomy-
ces pombe. Using microarrays, a set of experiments was obtained on cell 
cycle regulation, sexual differentiation, and response to stress and envi-
ronment (36,37). These experiments were conducted in the same experi-
mental conditions as those used with S. cerevisiae (38,39), and allowed 
scientists to make interspecies comparisons between these two related, 
but distant, yeast species and to draw correlations between gene expres-
sion and gene conservation (40). If one wants to compare the expression 
of a new organism, the best way to do so is to follow the same experi-
mental conditions as those already available.
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Some help can also be found using tools linking expression results and 
GO-functional annotation. As an example, the GoMiner tool (41) allows 
browsing expression results according to GO annotation to search for 
functional correlations. This can be done for microarray experiment 
results coming from various organisms, and correlation can be found 
searching for common motifs in the di-acyclic graph (DAG) outputs 
obtained with significantly expressed genes. In addition, the integration 
of “context” related to experimental conditions can increase the power 
of association made using GO annotation. Currently, when multiple 
annotations are found for one gene, searching in DAG can rapidly 
increase the complexity of the information. Merging experimental infor-
mation from other experimental procedures, or reducing the complexity 
by focusing on specific experimental conditions, helps in finding relevant 
correlations.

4.2. Gene-Centered Approaches

Contrary to the global methodologies, gene-centered approaches aimed 
at discovering correlations between expression profiles across different 
species, focusing on one gene. Indeed, one of the most reliable ways to 
go deeper into the data to capture interesting trends is to be an expert 
in the field. In that respect, tools allowing the biologist to analyze a subset 
of genes related to his area of expertise were highly desirable. That is the 
reason why we developed the yMGV (42) and MiCoViTo (7) tools to 
help researchers mining expression data from this gene point of view.

4.2.1. yMGV (yeast Microarray Global Viewer)
The initial philosophy of yMGV was to empower biologists with a data-
mining interface, and generate easily interpretable and mostly graphical 
outputs (6). Recently, intraspecies data analyses carried out by yMGV 
have been extended to incorporate data allowing comparisons of gene 
expression between orthologs (42). To facilitate these comparisons, a S.
cerevisiae to S. pombe orthology table based on sequence similarity has 
been stored in the database (43). The Web interface allows users to 
retrieve genes based on expression levels in specified experiments. When 
used with discrimination, this tool should help the fission yeast commu-
nity to easily take advantage of the huge amount of available informa-
tion on the budding yeast transcriptome. In addition, as it has been 
shown that standard clustering methods are usually less effective when 
applied to large numbers of data sets (compendium) that are biologically 
unrelated (44), the microarray experiments in yMGV are hand-curated 
and classified into 17 biologically coherent categories. A module is avail-
able that lists genes that are significantly coexpressed in respect to a 
user-selected reference gene according to one of the 17 biological catego-
ries. This proved to be very efficient for isolating genes co-regulated only 
in specific conditions.

4.2.2. MiCoViTo (Microarray Comparison Visualization Tool)
With the MiCoViTo tool, users can identify and visualize groups of genes 
having similar expression in two sets of microarray experiments repre-
senting two distinct transcriptome states. This tool allows the biologist to 
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mine microarray results to find expression modifications in a subset of 
genes related to his area of expertise. Such “gene-centric” clustering 
analysis, which distinguishes differentially expressed genes in specific
parts of the transcriptome, overcomes some drawbacks of global analysis 
approaches. With MiCoViTo, a given transcriptome state can be repre-
sented as a network where genes are joined pairwise by a weighted link 
proportional to their corresponding expression profiles. The basic idea is 
therefore to compare the immediate transcriptome neighborhood of a 
given gene (seed gene) in two sets of microarray experiments describing 
two distinct transcriptome states. Using this approach to compare tran-
scriptomes from different organisms captured in the same state will be 
possible by incorporating functional annotation in the same format for 
two organisms and defining pairs of seeds having interorganism corre-
spondence. This will be part of future development of the MiCoViTo 
tool.

5. Using Expression Data Provides New Insight into 
Cross-Species Comparisons

The availability of genome sequences and genome-wide biological data 
provides a large amount of information that can be analyzed to enhance 
fundamental understanding of the universality, as well as the speciali-
zation, of molecular biological mechanisms. Comparative analysis of 
expression data between two or more model organisms provides new 
insight into cross-species comparisons. In this last section, several appli-
cations for cross-species comparisons are discussed. Note that for the 
sake of clarity, particular examples are also presented. They have been 
extracted from a cross-species comparison of the yeasts S. cerevisiae and 
S. pombe (45). These two model organisms have been chosen because 
two very similar sets of microarray time-course experiments (one for 
each organism) were available. Two different laboratories have used 
DNA microarray to study the transcriptional program that drives the 
developmental process of sporulation (36,38), in which diploid cells 
undergo meiosis to produce haploid germ cells.

5.1. Application 1: Improving Functional Gene Annotations

With the rapid increase in the number of sequenced genomes (1), one 
of the major ambitions of the postgenomic era is the functional elucida-
tion of newly sequenced ORFs (46). Functional gene annotations of new 
ORFs are often predicted based on sequence similarity with genes of 
known functions. Despite the success of this approach, the absence of a 
direct relationship between sequence similarity and functional similarity 
of two proteins is a well-recognized limitation. An ORF can have several 
close homologs, all involved in different functions. In this case, gene 
expression analysis can provide functional information, complementary 
to that from sequence data. Indeed, homologous genes whose function 
has been conserved are expected to be expressed in a similar way. For 
that reason, finding an evolutionary conservation of expression patterns 
between species can help to identify genes that are genuinely function-
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ally related. Several studies have integrated cross-species expression and 
sequence comparisons to systematically infer gene functions (8,9). In 
Stuart et al. (8), the authors compared the correlated patterns of gene 
expression in more than 3,000 DNA microarrays from humans, flies,
worms, and yeasts. They identified genes that were coexpressed across 
multiple organisms and demonstrated that multiple-species analyses 
tend to retain coexpression links between functionally related genes, 
whereas it discards spurious gene-expression links.

As an illustration, we can consider the S. cerevisiae gene ATG8 
(YBL078C) and its S. pombe ortholog SPBP8B7.24C. In this case, 
sequence homology and expression profiles during sporulation are con-
served between the two yeasts (Figure 2). The SGD database (47) con-
tains experimental data and a precise description of the gene ATG8 (48); 
it encodes a protein that mediates attachment of autophagosomes to 
microtubules. Whereas in the GeneDB database (49), the only informa-
tion (as of October 2005) about the gene SPBP8B7.24C (a “predicted 
autophagy-related microtubule-associated protein”) is inferred from 
sequence homology. However, the demonstration of conservation of 
expression substantially strengthens the functional gene annotation 
(Figure 2). The evolutionary conservation of expression patterns between 
species provides functional information, complementary to that from 
sequence data, and helps identify genes that are functionally related.

5.2. Application 2: Refining Orthologous Links Between Organisms

We saw in section 3 that the identification of genes that are orthologs 
between species is an important point in cross-species compari-
sons. But we also pointed out a major difficulty; using automated 
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Figure 2. Conservation of expression between organisms can be used for improv-
ing functional gene annotation. (A) Expression profile of S. cerevisiae gene
ATG8 during the time course experiments described in Chu et al. (38) and 
expression profile of its S. pombe ortholog gene SPBP8B7.24C during the time 
course experiments described in Mata et al. (36). (B) Sequence alignment 
between the amino acid sequences of the genes ATG8 and SPBP8B7.24C. Align-
ment and colored version of the result were generated using the Tcoffee Web 
server (50).
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orthology-detection methods, it is sometimes not possible to determine 
a unique relationship between two organisms for some amino acid 
sequences. Again, the combination of sequence and expression data 
allows the discrimination of homolog genes, which cannot be distin-
guished by sequence comparison alone.

As a simple illustration, we can consider the S. cerevisiae gene GPN1
(YDR508C). Using the INPARANOID algorithm (29), two orthologs 
have been detected in the S. pombe genome: SPBPB2B2.01 and 
SPBC19F8.06C/meu22 (Figure 3A). This situation may be the conse-
quence of lineage-specific gene duplications generating multiple para-
logs in one species (in this case S. pombe), or deletion events resulting 
in the loss of the “true ortholog” of a gene in S. cerevisiae. Nevertheless, 
in such a case it is nontrivial to determine which of the genes is function-
ally equivalent to the ortholog in the other species. But, as two labora-
tories have used DNA microarrays to study the transcriptional program 
that drives the sporulation process, it has been possible to plot the cor-
responding expression profiles (Figure 3B). Interestingly, of the two 
S. pombe expression profiles, that of meu22 (SPBC19F8.06C, light gray) 
is clearly different from the expression profile of SPBPB2B2.01, but very 
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Figure 3. Coexpression can be used for refining orthologous links between 
organisms. (A) Multiple sequence alignment between the amino acid sequences 
of the three genes, whose expression profiles are represented in B. Boxes at the 
top allow for discrimination between sequences (SPBC19F8.06C/meu22, light 
gray; SPBPB2B2.01, black; GPN1/YDR508C, black asterisk). Alignment and 
colored version of the alignment were generated using the Tcoffee Web server 
(50). Gray residues correspond to highly reliable portions of the multiple align-
ments. (B) Expression profile of GPN1 during the time course experiments as 
described in Chu et al. (38), and expression profiles of the two S. pombe genes
related to GPN1 with high similarity scores (SPBPB2B2.01, black; SPBC19F8.06C/
meu22, light gray) during the time course experiments described in Mata et al. 
(36).
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similar to that of GPN1. Such an observation suggests that, in fine, only 
the orthologous link between GPN1 and meu22 is reliable.

6. Conclusion

Comparing genomic properties of different organisms is of fundamental 
importance. It is now clear that a large fraction of the genes specifying 
the core biological function is shared by all eukaryotes. In this sense, 
comparative functional genomics is a powerful approach to distinguish-
ing the similar from the species-specific features of biological process. 
Yet, the challenge of systematically comparing expression data between 
organisms is only starting to be addressed, but provide unprecedented 
opportunities to understand the evolution of biological systems.

We can hope in the future that cross-species comparison will benefit
from the improvements made on microarray data quality and gene anno-
tation. Indeed, we can expect that standardization process will create 
more reliable microarray datasets that will be comparable between each 
other. In the meantime, increasing knowledge on gene annotation will 
enrich GO databases. With this information, powerful cross-species 
comparison could be performed using, for example, a complex graph-
based algorithm approach. We can also hope that a real demand will 
come from the biologist community for easy to use and reliable tools to 
mine these cross-species data.
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9
Methods for Protein–Protein 
Interaction Analysis
Keiji Kito and Takashi Ito

Summary

Protein–protein interactions (PPIs) play key roles in various aspects of 
cellular regulation. Accordingly, PPI analysis is crucial for systems-level 
understanding of any biological process. This chapter describes two 
major methods for PPI analysis, namely, mass spectrometry (MS)–based 
approaches and yeast two-hybrid (Y2H)–based ones. Both methods have 
been the major driving forces of interactome mapping to reveal the 
characteristics of global PPI networks. Furthermore, MS-based methods 
enable a quantitative analysis of interaction, thereby providing insight 
into system dynamics. Alternatively, Y2H-based methods provide inter-
action-defective and separation-of-function alleles, which are useful for 
system perturbation. These two methods would thus contribute not only 
to system identification but also to system analysis, thereby serving as 
invaluable tools for systems biologists.

Key Words: Mass spectrometry; affinity tag purification; tandem affinity
purification tag (TAP tag); stable isotope labeling; yeast two-hybrid 
system; reverse two-hybrid system; interactome.

1. MS-Based Approaches for PPIs

1.1. Identification of Proteins with MS

In MS-based proteomics, two major methods, namely, peptide mass fin-
gerprinting (PMF) and tandem MS (MS/MS) analysis, are widely used 
for protein identification (1–3). In either method, proteins were digested 
with proteases into a set of fragments, and the resultant peptides are 
ionized and introduced into a mass spectrometer.

1.1.1. Protein Identifi cation with PMF
In PMF, masses of proteolytic peptides derived from a protein are mea-
sured simultaneously (or as a set) with MS (Figure 1). Trypsin is the most 
popular enzyme to cleave the main chain of protein at the C-terminal 
side of arginine and lysine. It is possible to calculate a set of masses for 
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the peptides produced by trypsin digestion of each protein in the data-
base. An experimentally measured set of peptide masses can be com-
pared with each theoretically calculated set of masses using a search 
engine (Figure 1). If sufficient matches are found between the experi-
mental data and a theoretical set of peptide masses from a protein X in 
the database, the protein of interest is identified as protein X.

In PMF, mass spectra are usually obtained using matrix-assisted laser 
desorption/ionization (MALDI)–time-of-flight (TOF)–MS, in which the 
analytes are ionized via MALDI, a method for soft ionization, and the 
masses of ions are measured by a TOF mass analyzer. Samples crystal-
lized with matrix are sublimated and ionized by laser pulse, and the 
ionized analytes are separated according to the difference in duration of 
flight from ion source to mass detector in TOF-mass analyzer, which 
depends on the mass-to-charge ratio (m/z).

PMF is a simple and easy method for protein identification. MALDI-
TOF-MS can detect a wide range of masses to achieve high coverage of 
peptides from a simple sample that contains only a few proteins. On the 
other hand, PMF is not suitable for the analysis of complex samples 
composed of multiple protein species because of the difficulty in assign-
ment of the complicated spectra derived from many proteins.

1.1.2. Protein Identifi cation with MS/MS
In MS/MS analysis, fragment ions of individual peptides generated in MS 
equipment are measured to obtain sequence information. In the first
step, MS spectrum is recorded for ionized peptides introduced into the 
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Figure 1. Protein identification with PMF and MS/MS analysis.
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instrument. In the second step, a peptide ion to be analyzed, such as the 
most intense one, is isolated and fragmented, and MS/MS spectrum is 
obtained for the resultant fragment ions (Figure 1). Peptides dissociate 
most frequently at the peptide bonds via a low-energy, collision-induced 
dissociation (CID), which is a method for ion fragmentation by collision 
with inert gas molecules and is frequently used for proteomics analysis.

If every fragment ion generated from the analyzed peptide can be 
detected, it is possible to read out the amino acid sequence (de novo
sequence). However, perfect MS/MS spectra including every fragment 
ion are rarely recorded, because of uneven breakage of individual peptide 
bonds. Usually, masses of the isolated peptide and its fragment ions are 
compared with those theoretically calculated from the protein sequence 
database (Figure 1). A score, which indicates the reliability of peptide 
identification, is assigned to each MS/MS analysis according to the degree 
of matches between the experimentally measured masses and theoreti-
cally predicted ones.

In this manner, peptides can be identified by MS/MS analysis through 
the patterns of fragment ions. Because we know which entry in the data-
base contains each identified peptide sequence, proteins in the analyzed 
samples can be specified by the identified peptides. MS/MS analysis is 
highly sensitive and suitable for analyzing complex samples, because 
target ion is isolated from the others, including background noise, before 
the analysis and because a single highly reliable assignment of MS/MS 
spectrum to a peptide may be enough to identify the protein. Of note, 
the MS/MS approach provides not only the mass of a peptide but also 
its amino acid sequence, thereby making protein identification much 
more reliable than the PMF approach, which depends solely on the 
masses. As described in the following sections, MS/MS analysis is ame-
nable to be coupled with peptide separation steps such as liquid chro-
matography (LC) before ion introduction into MS equipment, providing 
a technical platform for high-throughput analysis of complex protein 
mixtures.

Two types of MS instrument, the ion-trap analyzer and hybrid type of 
the quadrupole-TOF combination, are most widely used in MS/MS anal-
ysis for proteomics, coupled with electrospray ionization (ESI) as an ion 
source. In the ESI method, which is one of the soft ionization techniques, 
the analytes in a solvent are ionized by application of high voltage. Ion-
ization of the analytes in solution makes it easy to couple the ESI with 
LC, thereby allowing the implementation of online separation steps 
before ionization.

1.1.3. Identifi cation of Multiple Proteins in Complex Samples
To identify multiple proteins from a complex mixture sample, separation 
steps are required before MS analysis. In PMF approach, proteins are 
usually resolved with sodium-dodecyl sulfate (SDS)-polyacrylamide gel 
electrophoresis (PAGE) or two-dimensional (isoelectric focusing [IEF] 
and SDS-PAGE) gel electrophoresis (2DE), and individual bands or 
spots are excised and subjected to in-gel digestion with a sequence-
specific protease (1,2). A set of peptide masses were measured with 
MALDI-TOF-MS as described in previous sections.
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In MS/MS analysis, one or two-dimensional electrophoresis is also 
used as the separation step for proteins to be analyzed (1,2). In contrast 
with PMF, MS/MS relies on peptide sequence and the mass of each 
peptide, but not the combination of peptide masses. Accordingly, there 
is no need for simultaneous detection of a set of peptide ions derived 
from a protein; each peptide can be separated and introduced indivi-
dually (or at different times) into the MS instrument. In the case of 
ESI, it is possible to connect LC directly with the ion source, thereby 
minimizing the loss of samples to achieve higher sensitivity and through-
put (2,3). In such LC-ESI-MS/MS analysis, peptides separated using 
reverse-phase LC are directly introduced into the MS instrument via 
ESI, and a multitude of MS/MS spectra are obtained with an automated 
data acquisition system. This system is widely used in proteomics and 
has a significant impact on the analysis of complex samples containing a 
great number of proteins (Figure 2). In particular, multidimensional 
protein identification technology (MudPIT) using 2-dimensional LC, 
which combines strong cation-exchange and reverse-phase chromato g-
raphies, enables high-throughput identification of more than 1,000 
proteins at once (4). Thus, a MS-based protein identification system 
serves as a powerful technical platform for large-scale analysis of protein 
interactions, in combination with the technology for purification of 
protein complexes.

Figure 2. Identification of multiple proteins with LC-MS/MS analysis.
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1.2. Isolation of Protein Complexes with Affinity Tag Purification

1.2.1. Purifi cation of Protein Complexes with Affi nity Tags 
Introduced into the Target Proteins
Protein complexes were traditionally purified by biochemical methods, 
such as gel filtration chromatography and density gradient centrifuga-
tion. These approaches, which require optimization of purification pro-
cedures in a case-by-case manner, are labor-intensive and time-consuming. 
Affinity purification, which uses an affinity probe for the target protein 
(bait), is a convenient method that can be applied to a variety of protein 
complexes using a unified procedure. Although antibodies against bait 
protein would be the best affinity probes to purify the protein complex, 
a good antibody is not always available for the protein of interest. It is 
thus general to attach an affinity tag specifically recognized by antibodies 
or ligands to the bait protein (1–3,5).

In affinity purification, a bait protein fused with an affinity tag and its 
associated proteins are captured on an appropriate affinity resin to be 
separated from unbound proteins (Figure 3). Protein complexes are 
subsequently eluted with reagents, to dissociate the interaction between 
the affinity tag and the resin. Various tags have been developed for affin-
ity purification, including short peptides, binding domains, or proteins, 
which have been also used for purification of recombinant proteins (6). 
Because a standard purification procedure can be established for each 
tag, a large-scale analysis of protein complexes can be conducted using 
a unified protocol.

For the budding yeast, a DNA fragment coding an affinity tag can be 
introduced into the genomic locus of the target protein via homologous 

Figure 3. Purification of protein complexes with affinity tag.
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recombination. This strategy allows the tagged proteins to be expressed 
under its own promoter or at the physiological level, thereby eliminating 
artifacts induced by overproduced proteins. For higher eukaryotes, such 
as mammals, tagged-proteins are generally expressed from a plasmid or 
viral vector. In any case, the expression levels should be compared 
between the tagged protein and its endogenous counterpart to eliminate 
the effects of over- and underexpression of the former protein. Although 
affinity tags can be attached either to the N- or to the C-terminal, it is 
needless to say that every possible care should be taken to keep the 
protein function as intact as possible.

1.2.2. TAP Tag
Affinity tags can be designed not only for single-step but also for two-
step purification procedures. Single-step purification generally results in 
higher yield and retention of weak interactors, but tends to suffer from 
a higher amount of contaminants. In contrast, two-step purification, by a 
serial use of two different affinity tags, substantially improves the purity, 
but tends to result in a lower yield and dissociation of weak interactors. 
The most popular procedure for two-step purification would be the 
tandem affinity purification (TAP) method, in which the affinity tag 
(TAP tag) consists of calmodulin-binding peptide (CBP), tobacco etch 
virus (TEV) protease recognition sequence, and immunoglobulin-binding 
domain of protein A (PrA) (7). At the first step of TAP procedure, the 
TAP-tagged complex, which is composed of the TAP-tagged bait protein 
and its associated proteins, is captured on immunoglobulin resin via PrA. 
After an appropriate washing step, the captured protein complex is spe-
cifically released from the resin by cleavage with TEV protease. The TEV 
eluate is subjected to the second purification step, in which the TAP-
tagged complex is bound to calmodulin resin via CBP. After an appropri-
ate washing step, the complex is released by chelating Ca2+ with EGTA. 
The protein components of the purified complex can be identified by MS 
analysis. The TAP method has been widely used for identification of 
novel proteins in a particular complex and for comparative analyses of 
orthologous complexes in different organisms (8–12).

1.3. Large-Scale Analysis of Protein Complexes

1.3.1. Two Approaches for Large-Scale Analysis of 
Protein Complexes
A large-scale analysis of protein complexes was enabled via a combina-
tion of high-throughput MS-based protein identification and systematic 
standardization of affinity purification procedures. As pioneering works, 
two studies on yeast protein complexes were carried out using TAP and 
FLAG epitope tag for affinity purification (13,14). In the former case, 
TAP tag was inserted into the genomic locus by homologous recombina-
tion, producing the fused protein at a natural expression level. Protein 
complexes were isolated with the aforementioned two-step purification,
followed by protein identification with SDS-PAGE and PMF analysis. 
In the latter approach, termed as HMS-PCI (high-throughput mass 
spectrometric protein complex identification), each FLAG-tagged 
bait protein was expressed from a plasmid vector using an inducible 
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promoter. Protein purification was performed with a single-step immu-
noprecipitation using anti-FLAG antibody resin, followed by SDS-PAGE 
and LC-MS/MS analysis.

1.3.2. Comparison Between the Two Large-Scale Data Sets
The TAP and HMS-PCI studies used 589 and 600 bait proteins to suc-
cessfully purify 454 and 493 complexes, respectively, each containing at 
least one associated protein identified by MS (15). Although 115 baits 
are common to both approaches, the interacting proteins (prey) of these 
baits showed only a marginal overlap (Figure 4): the TAP and HMS-PCI 
data sets contain 628 and 875 interactions from common baits, respec-
tively, of which only 198 (15%) were shared. Among the protein com-
plexes purified by the common 115 baits, 48 (42%) shared at least one 
protein, but the remaining 67 (58%) shared no proteins at all.

The small overlap may result from the differences in strategy between 
the two studies, because both studies reported that 70% of protein inter-
actions were reproducibly detected (13,14). Several proteins recovered 
by many different bait proteins were assumed as contaminants, which 
presumably associated nonspecifically with bait proteins or affinity resin 
and were thus omitted from the analysis. HMS-PCI has a higher con-
taminant background (50% of total interactions) than TAP (20%). This 
may be attributed to the overexpression of tagged proteins and one-step 
purification procedure in HMS-PI (13,14). The use of a more sensitive 
detection system (or LC-MS/MS) may also contribute to the high inci-
dence of contaminants in HMS-PCI. Alternatively, one-step purification
could increase the chance of detecting weak and transient interactions. 
Indeed, HMS-PCI successfully identified protein interactions between 

Figure 4. Comparison of two large-scale analyses of yeast protein complexes 
based on affinity tag purification and MS technology. The numbers indicated are 
from the previous report to compare these two analyses (15).
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substrates and kinases, including mitogen-activated protein kinase and 
cyclin-dependent kinase (Cdk) (14).

The two large data sets were compared to other available information, 
such as functional categories of each protein and interactions previously 
reported in conventional studies or detected with different experimental 
strategies. Interacting protein pairs from TAP data set more often share 
the same functional categories than those from HMS-PCI (16). In addi-
tion, comparison of the interactions detected by the common baits indi-
cates that TAP shows a higher coverage of known interactions than 
HMS-PCI (15). These assessments suggest that TAP strategy is more 
reliable than the HMS-PCI approach. On the other hand, HMS-PCI data 
contained more unknown proteins, which may be weak or transient 
interactors leading to the identification of novel interactions. Thus, in a 
sense, these two large-scale analyses are of complementary nature, and 
their integration would improve the accuracy and coverage of identified
protein interactions. In terms of comparison with interactions detected 
by other methods, it should be noted that the two data sets show a similar 
small overlap with the protein interactions detected by comprehensive 
Y2H analyses (15).

1.3.3. Genome-Wide Analysis for Protein Complexes
After the initial large-scale analysis, the TAP strategy was further 
extended to a genome-wide scale: all of the open reading frames (ORFs) 
in the budding yeast were TAP-tagged, and 3,206 purifications were 
conducted to successfully purify 1,993 TAP-tagged proteins, approxi-
mately 90% of which contained at least one associated protein (17). 
These data clustered cellular proteins into different complexes, each of 
which often has several isoforms that share “core” components, but have 
different “attachment” components, presumably generating functional 
variety (Figure 5). Intriguingly, some of the proteins classified as attach-
ments frequently co-occur in different complexes, thereby serving as a 
module for functional diversification (Figure 5). The analysis identified
491 complexes with 5,477 isoforms, 478 cores, and 147 modules to reveal 
the modular architecture of cellular machinery.

1.4. Focused Analysis on PPI Networks

Besides the global studies, MS-based PPI analysis was also performed in 
targeted studies to reveal a more precise interaction network in a parti c-
ular cellular pathway. Targeted analysis allows more detailed, or finer,
experiments, in which the proteins identified as prey in the first round of 
experiments are tagged to be used as bait in the second round to validate 
the interactions (reverse-tagging experiments); the biological relevance 
of the identified interactions is evaluated by integrating the results of 
various biochemical, genetic, and cell-based assays. Two examples are 
described in the following sections.

1.4.1. Analysis of Associated Proteins with Cdk
Cyclin-dependent kinases are the main regulators of cell cycle and are 
activated by binding to cell cycle stage–specific cyclins. Cyclin-Cdk 
modules phosphorylate a variety of substrates involved in the cell cycle 
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progression, including transcription factors, replication machinery, 
chromosome segregation machinery, ubiquitin ligases, and cyclin inhi-
bitors. Understanding of PPIs around Cyclin-Cdk is, thus, vital to un-
cover the mechanism by which cell cycle proceeds in a highly regulated 
manner.

Cyclin-associated proteins, including known interacting partners, were 
identified via MS analysis of the proteins copurified with each PrA-
tagged cyclin, which was expressed from their genomic loci and purified
by a single-step purification using immunoglobulin resin (18). Detected 
interactions were confirmed by reciprocal purification, in which the 
cyclin-associated proteins were tagged and purified for MS analysis to 
identify the cyclin as their binding partner. Intriguingly, the analysis 
revealed that some of the identified proteins were phosphorylated at 
Cdk consensus motifs, suggesting that they serve as novel substrates of 
Cyclin-Cdk.

Of note, many of the associated proteins with biological relevance 
confirmed in this approach had escaped detection in the large-scale TAP 
and HMS-PCI analyses (13,14,17). This may be because weak and tran-
sient interactions would be lost during two-step purification in TAP, and 
because overexpression of tagged proteins in HMS-PCI would inhibit 
effective identification of physiological interactions. Although the single-
step purification results in the detection of many contaminants, specific
interactions can be distinguished from the nonspecific ones via a quan-
titative analysis using stable isotope-labeling (19).

Figure 5. Schematic illustration for modularity of the yeast protein complexes. 
Architecture of protein complexes is illustrated, based on the report for a 
genome-wide analysis of yeast protein complexes (17). The letter in each circle 
represents a component.
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1.4.2. Protein Interactions in the Tumor Necrosis Factor 
(TNF)-a–induced NF-kB Signaling Pathway
NF-κB is activated by proinflammatory cytokines to induce expression 
of various genes playing central roles in mammalian immune response. 
For mapping the PPI network around this protein, 32 known or can-
didate components in the TNF-α-induced NF-κB signaling pathway were 
TAP-tagged and purified, along with associated proteins (20). To gener-
ate a reliable data set, purification was repeated at least four times 
for each bait protein, and the obtained data were compared with those 
from control purifications conducted at the same scale. To validate the 
involvement of detected interactors in the signaling pathway, they were 
knocked down by RNA interference, and the effects on the signal 
transduction were evaluated. This strategy succeeded in the ability to 
identify previously unknown components in this pathway with high 
confidence.

1.5. Quantification of Dynamics of PPIs with Stable 
Isotope-Labeling Methods

Besides protein identification, MS can be used to reveal quantitative 
differences between the samples, provided that either of them is labeled 
with stable isotope. Thus, integration of isotope-labeling techniques to 
the MS-based protein complex analysis allows one to obtain information 
on not only static but also dynamic aspects of PPIs, which would be more 
vital for modeling and systems-level understanding of the molecular 
events in the cells.

1.5.1. Methods of Protein Labeling with Stable Isotope
The intensities of ions detected by MS equipment do not directly corre-
spond to the abundance of the peptide, as each peptide displays different 
ionization efficiency, depending on its intrinsic chemical property, the 
complexity of the sample, and the natures of coexisting peptides. There-
fore, in quantitative MS analysis of proteins, intensity of each peptide 
ion should be compared with that of the peptide sharing the same chem-
ical property, but having a different mass; i.e., the isotopically labeled 
peptide.

The labeling methods are largely classified into two categories, namely, 
chemical and metabolic labeling (21–24). In the former, proteins or pep-
tides isolated from the cells are chemically labeled in vitro with stable 
isotope tags. In the latter, cells are cultivated in the presence of stable 
isotope-labeled essential nutrients, such as amino acids, to metabolically 
label the proteins in vivo. The chemical labeling methods can be applied 
to almost any type of samples and proteins. In contrast, metabolic label-
ing methods are more suitable for metabolically active cells and proteins 
turning over at a substantial rate.

1.5.1.1. Chemical Labeling Methods: The most popular chemical label-
ing method is the isotope-coded affinity tag (ICAT) approach, in which 
a compound consisting of a biotin affinity tag, a linker containing stable 
isotope, and a reactive part against the thiol group, is coupled to cysteine 
residues in the proteins (25). After the labeling of one protein sample 
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with light affinity tag and the other with heavy affinity tag, these two 
samples are combined and subjected to protease digestion, followed by 
enrichment of cysteine-containing peptides and MS analysis (Figure 6). 
Besides ICAT protocol, various methods have been developed for label-
ing carboxyl, amino, or thiol moieties (21–24).

1.5.1.2. Metabolic Labeling Methods: In the first attempt at metabolic 
labeling, yeast cells were grown in medium containing an isotope-labeled 
nitrogen source to generate the quantitative data for multiple proteins 
with MS analysis (26). Later, alternative protocols were developed, in 
which stable isotope-labeled amino acids were used as essential nutrients 
to label the proteins in the growing cells (27–29) (Figure 6). Trypsin and 
lysil-endopeptidase (Lys-C) are generally used for digestion of proteins 
to produce peptides containing at least one basic amino acid, either 
lysine or arginine, at their C-terminal ends. Thus, if stable isotope-labeled 
lysine is incorporated into the proteins, all of the peptides generated by 
Lys-C digestion would be quantifiable. Among other amino acids, leucine 
is preferentially used because it is one of the most abundant residues in 

Figure 6. Labeling protocols of proteins based on (A) chemical and (B) meta-
bolic methods. (A) In ICAT method, two protein samples labeled with light and 
heavy forms of the reagent are mixed and digested into peptides, followed by 
enrichment of Cys-containing peptides with biotin affinity tag. (B) Proteins 
extracted from the cells grown in a medium containing either light (native) or 
heavy (stable isotope-labeled) nutrient, are mixed and digested into peptides. In 
either method, differences in abundance of peptides are quantified with the ratio 
of intensities for light and heavy ions.
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the yeast proteome. For instance, approximately 70% of unique trypsin 
or Lys-C–digested peptides of yeast contain at least one leucine. Thus, 
lysine and leucine are widely used for isotope labeling of proteins.

1.5.2. Quantitative Analysis of Protein Complexes
MS-based technology, combined with affinity purification and stable 
isotope labeling, enables quantitative analysis of protein complexes. For 
instance, quantitative change in the number of proteins associated with 
the PrA-tagged yeast Ste12 transcription factor was examined using the 
ICAT method (30). Ste12 complex containing Ste12 and two known 
interactors was unambiguously found to increase in its amount after 
stimulation with mating pheromone, providing a possible model for regu-
lation of Ste12 activity during response to this factor. Similarly, metabolic 
labeling was successfully used to examine the change of proteins associ-
ated with phosphorylated form of the epidermal growth factor receptor 
(EGFR), which was purified using a recombinant SH2 domain that spe-
cifically binds to the phosphorylated EGFR (31). A wide variety of pro-
teins, including both previously reported interactors and novel ones 
never implicated in this signaling pathway, were detected as the mole-
cules showing enhanced association with EGFR upon EGF stimulation, 
providing novel insights into the EGF signaling pathway.

1.5.3. Perspective for Quantitative Analysis of Protein Interactions
The aforementioned approaches can generate quantitative data on 
protein complexes. Although these data would be quite useful, they are 
relative quantification data on protein abundance in the isolated com-
plexes, thereby still falling short of grasping the actual picture of PPIs in 
the cells. To obtain much more useful data for calculating the kinetic 
parameters and quantitative modeling, absolute quantification is ideal. 
The use of the known number of stable isotope-labeled standards enables 
absolute quantification of the proteins in the purified sample. One should, 
however, know and calculate the efficiency of bait recovery and the dis-
sociation of prey during the purification. It is also an issue to be critically 
evaluated whether the detected PPIs in the cell extracts faithfully reflect
those in the living cells. Although in vivo chemical cross-linking of PPIs 
would provide a snapshot of protein complexes in the cells (32,33), effi -
ciency of cross-linking is, unfortunately, far less than 100%, in general. 
Therefore, despite remarkable progress in recent years, further technical 
advances, especially in the preparation of protein complexes and the 
evaluation of absolute quantity, are necessary for MS-based proteomics 
to contribute to delineation and modeling of the molecular events in the 
cells.

2. Two-Hybrid Approaches for Protein Interactions

2.1. Principle of the Y2H System

The Y2H was originally developed by Stanley Fields and his colleagues 
based on the modular architecture of the yeast transcription factor Gal4 
(34). Molecular anatomy of Gal4 in the early 1980s had revealed a well-
defined DNA-binding domain (DBD) and transcription activation 
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domain (AD). The role of the DBD can be interpreted as binding the 
upstream activation sequence (UASGAL) to place the AD in close proxim-
ity to target gene promoters, thereby inducing their transcription. 
Although the recruitment is usually achieved via the covalent bonds 
linking the two domains, it can be mediated by a non-covalent interaction 
between the two domains. Accordingly, when a pair of interacting pro-
teins, namely, X and Y, are coexpressed as two hybrid proteins Gal4-
DBD-X and Gal4-AD-Y, the former hybrid (or bait) can bind the UASGAL

to recruit the latter hybrid (or prey) via the interaction between X and 
Y, thereby inducing the expression of the gene lying downstream from 
the UASGAL (i.e., the reporter gene) (Figure 7). In other words, the 
expression of the reporter gene indicates an interaction between the two 
proteins X and Y. In brief, “interaction-mediated reconstitution of Gal4 
activity” was the basis of the original Y2H system.

The Y2H does not always use Gal4. Some systems use Escherichia coli 
LexA and its operator (LexOp) instead of Gal4 and UASGAL, respec-
tively. Similarly, VP16 and B42 are also used instead of Gal4-AD. For the 
reporter gene, E. coli β-galactosidase gene (lacZ) is frequently used 
because its expression can be detected by simple X-gal staining and 
quantified by the measurement of the enzyme activity. However, for 
library screening to identify unknown binding partners, nutritional se-
lections such as HIS3, ADE2, and URA3, are much more useful than 
lacZ, because these genes allow selection on plates lacking histidine, 
adenine, and uracil, respectively. For HIS3, it is common to use a medium 
not only lacking histidine but also containing 3-aminotriazole (3-AT), 
which is an inhibitor of imidazoleglycerol-phosphate dehydratase or 
His3 protein, to confer severe histidine starvation.

2.2. Pros and Cons of Y2H

The beauty of the Y2H system is that it allows one to detect PPIs under 
a physiological in vivo condition without any need to handle proteins. It 
can be quite sensitive, and it can be used to screen a library to identify 
unknown binding partners of the protein of your interest. In addition, it 
can be used for finer mapping of binding domains, as well as isolation of 

Figure 7. Principles of the Y2H system.
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interaction-defective alleles, which help decipher a biological role for 
the PPI.

However, it is generally believed that Y2H tends to give false-positives 
(FPs). The FPs can be divided into two categories, namely, technical FP 
and biological FP. Technical FP is based on reporter gene activation 
independent of the two-hybrid interaction, which may be caused by self-
activation of bait and/or promoter-specific fortuitous activation. The 
former can be eliminated by rigorous examination of bait constructed 
before library screening. The latter can be eliminated using host strains 
bearing multiple reporter genes underregulated by different Gal4-
responsive promoters. For example, PJ69-4A and its derivatives bear 
GAL1pr-HIS3, GAL2pr-ADE2, and GAL7pr-lacZ, thereby minimizing 
fortuitous promoter-specific activation (35). Alternatively, biological FP 
is inevitable, because Y2H is an artificial system in which two proteins 
that would never encounter each other in the living cells may be forced 
to meet in the yeast nucleus. If they have some affinity in a purely physi-
cochemical sense, they may well interact with each other to induce 
reporter gene expression. Such an interaction is valid as a two-hybrid 
interaction, but is of no biological relevance. Thus, biological FP should 
be eliminated by knowledge-based curation of the data or by integrating 
other lines of experimental evidence.

One should also bear in mind that Y2H also suffers from false-
negatives. This is because some fractions of proteins inevitably fail to 
fold properly when fused to DBD and/or AD. In addition, because Y2H 
can detect only simple binary interactions by its nature, it would miss 
interactions requiring more than three proteins. Similarly, it would miss, 
in principle, interactions involving membrane proteins and posttransla-
tional modifications.

Although Y2H has contributed to the identification of a plethora of 
exciting interactions, it is not a magic bullet. However, it would indeed 
serve as a powerful bullet for careful hunters who know its pros and cons 
well.

2.3. Comprehensive Y2H Analysis for Interactome Mapping

The Y2H system was initially used to analyze a particular PPI interaction 
(i.e., one-to-one application) and was then used in the screening of a prey 
library for binding partners of the protein of interest (i.e., one-to-many 
application). Logical extension of its application would be the screen-
ing in a “many-to-many” mode, the extreme of which would be a com-
prehensive analysis that examines every possible binary combination 
between the proteins encoded by an organism’s genome. Indeed, a real 
proteome-wide Y2H analysis of the budding yeast was conducted inde-
pendently by two groups, including one of our own (36–38).

We amplified all annotated yeast ORFs in their full-length forms by 
means of PCR, and then cloned each of them into two vectors, one 
expressing each ORF as a Gal4-DBD fusion (bait) and the other express-
ing each ORF as a Gal4-AD fusion (prey) (36). The bait and prey plas-
mids were then introduced into Y2H host strains bearing mating type a
and α, respectively, using an optimized chemical transformation protocol 
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in a 96-well plate format. Bearing opposite mating types, bait and prey 
clones can be crossed to form diploid cells, each of which bears a unique 
combination of bait and prey. If the bait and prey interact, the reporter 
genes are activated to allow the cells to survive the Y2H selection. 
Accordingly, each survivor should bear a pair of mutually interacting bait 
and prey, the identities of which can be revealed by tag-sequencing of 
the cohabiting plasmids to generate an interaction sequence tag (IST) 
for subsequent database search.

In an actual screening, we used a pooling strategy. Each pool contained 
96 bait or prey clones and was subjected to the mating-based screening 
to examine all possible combinations between the bait and prey pools 
(Figure 8). The colonies of survivors were subjected to DNA sequencing 
to obtain ISTs. Consequently, 4,549 independent two-hybrid interactions 
were revealed in total (37). Of these, 841 were detected more than 3 
times and assumed to be of high relevance (i.e., core data set) (37). 
Notably, more than 80% of these interactions were novel at that time. A 
similar IST project was conducted by CuraGen, who screened a pool of 
5,331 preys with each of their 4,665 baits (39). They revealed 691 interac-
tions in total, most of which were, again, novel.

Comparison between our core data set and theirs revealed an un-
expectedly small overlap; the two data sets share 141 PPIs, which corre-
spond to approximately 10% of the total independent PPIs (37,39). 
There are several plausible reasons for this small overlap. The systems 
used by the two groups were different; we used multicopy vectors in the 
host, bearing multiple reporter genes under different Gal4-regulated 
promoters, whereas they used single-copy vectors, but used only a single 

Figure 8. An IST approach in a comprehensive Y2H analysis of the budding 
yeast proteome.
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reporter gene. Because both groups’ PCR amplified the ORFs, some of 
them would inevitably bear mutations affecting PPIs. Although both 
groups pooled clones, the screen does not seem to reach saturation: two-
thirds of our 4,549 interactions and one-third of CuraGen’s 691 interac-
tions were detected only once. Of course, any two-hybrid screen contains 
false signals; accuracy of these data sets is assumed to be 50%–60% (39). 
Nevertheless, these data provide a wealth of implications to various 
aspects in yeast biology and have borne a new field of “interactome 
informatics.”

After the pioneering works on yeast, large-scale Y2H screens were 
conducted on nematode, fruit fly, and human (40–43). In contrast with 
yeast studies, these studies integrate various methods to select reliable 
PPIs from raw Y2H data.

2.4. Reverse Y2H for Functional Analysis of PPIs

2.4.1. Mapping Interaction Domains by Means of Y2H
Although Y2H plays a major role in the search for new interactors and 
the cataloguing of PPIs, it also serves as an invaluable platform for finer 
analyses of verified PPIs. To further characterize a certain PPI, it is vital 
to know the domains mediating the interaction because the interaction 
domain can be overexpressed in the cell for competitive inhibition of the 
endogenous PPI to learn its biological role. For interaction domain mapping, 
Y2H is the most versatile method; the trimming at the DNA level readily 
converts to the examination at the protein level. It is even possible to 
screen a library of fragmented proteins derived from a single target protein 
to identify the minimal region to interact with its binding partner (44).

2.4.2. Isolation of Interaction-Defective Alleles by Reverse Y2H
Besides the mapping of interaction domains, it is also important to isolate 
an interaction-defective allele that encodes a protein defective in the 
interaction of interest. For this purpose, a smart method of “reverse” 
Y2H was developed (45). The most popular reverse Y2H system uses 
URA3 as its reporter gene. The URA3 reporter can be used in the selec-
tion for the interaction; its induction allows the cell to survive in the 
absence of uracil. Of note, it can also be used in the selection against the 
interaction in the presence of pro-toxin 5-fluoroorotic acid (5-FOA). 
Orotidine-5′-phosphate decarboxylase or Ura3 protein converts 5-FOA 
to 5-fluorouracil, which is a toxin that kills the yeast. In other words, 
URA3 functions as a “suicide” reporter in the presence of 5-FOA. 
Accordingly, we can select interaction-defective mutants from a library 
of mutagenized prey, using the reverse Y2H system. Once an interaction-
defective allele is isolated, it can be used to generate cells defective in 
the interaction to learn a biological role of the PPI. At the same time, 
sequencing of these interaction-defective alleles would help one pinpoint 
the site of interaction.

2.4.3. Isolation of Separation-of-Function Alleles by Dual-Bait 
Reverse Y2H
It should be noted that the proteins playing pivotal roles in regulation 
of biological systems often have several binding partners, thereby serving 
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as a merging or branching point in cellular signaling, or as a hub in the 
PPI network. To decipher the role of each interaction or path, it is vital 
to have a separation-of-function allele encoding a protein that is defec-
tive in one interaction, but not in the others. For effective isolation of 
such separation-of-function alleles, we developed a dual-bait reverse 
Y2H system in which Gal4- and LexA-based baits are used to induce 
the expression of URA3 and HIS3 (and/or ADE2) reporters in the same 
cell (46) (Figure 9).

Let’s say protein X can bind both proteins A and B. To learn a role of 
X–A interaction, we have to have a mutant X that is defective in binding 
A, but not in binding B. For this purpose, we expressed Gal4-DBD-A 
and LexA-B in the strain bearing both UASGAL-URA3 and LexOp-HIS3
as reporter genes. This strain is then mated with another strain with the 
opposite mating type that bears a mutated library of Gal4-AD-X. The 
resultant diploid cells were selected on a medium containing uracil, 5-
FOA, and 3-AT, but lacking histidine. To survive this selection, X has to 
bear mutations rendering it incapable of binding A so as not to induce 
the suicide reporter URA3. On the other hand, X has to retain its ability 
to bind B to induce HIS3 to tolerate 3-AT–induced severe histidine 
starvation. Therefore, each of the survivors would have a desired allele 
encoding a mutant protein X that interacts with B but not with A, and 
that can be subsequently used to learn a role of X–A interaction.

The dual-bait reverse Y2H can be also applied to selective isolation 
of missense mutations leading to defective interaction. Indeed, one of 
the pitfalls of reverse Y2H is that it frequently picks up nonsense mutants, 
leading to truncation of the protein of interest. Truncated alleles cannot 

Figure 9. Dual-bait reverse Y2H to isolate separation-of-function alleles. The 
star indicates a mutation abolishing the binding of X to A.
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be used for functional analysis and should be eliminated from the screen-
ing. For this purpose, we developed a system for “guaranteed” reverse 
Y2H as a variation of dual-bait reverse Y2H (46). In this system, the prey 
Y to be mutated was fused with Gal4-AD at its N-terminal end and with 
the PC motif-containing region (PCCR) of Cdc24 at its C-terminal end 
(Gal4-AD-Y-PCCR). The bait X was expressed as Gal4-DBD-X to acti-
vate UASGAL-URA3 for 5-FOA–mediated counterselection. In addition, 
the PB1 domain of Bem1, which was shown to interact specifically with 
the Cdc24 PCCR, is expressed as a LexA-fusion so that the PB1–PCCR 
interaction induces the expression of HIS3 to confer 3-AT resistance. In 
this system, survivors on medium containing both 5-FOA and 3-AT have 
to bear mutations on Y that abolish its binding to X but maintain the 
PB1–PCCR interaction, thereby eliminating nonsense mutants lacking 
the C-terminal–attached PCCR. In other words, the PB1-PCCR interac-
tion guarantees that the protein Y is not truncated. Indeed, this system 
successfully isolated Gcn1 mutants defective in interaction with Gcn2 
(46).

Collectively, the Y2H system allows one to obtain various useful alleles 
that can be used for perturbation or elimination of the interaction of 
interest, thereby contributing to an understanding of the systems involv-
ing the PPI.

2.5. Three-Hybrid System for Dissection of Complex Interactions

Another interesting Y2H application is the three-hybrid system, in which 
a third protein, Z, is coexpressed in a nuclear-targeted form in addition 
to a pair of bait, X, and prey, Y (Figure 10). If the two-hybrid interaction 
between X and Y turns out to be dependent on the expression of Z, we 
can assume that Z mediates or bridges an indirect interaction between 
X and Y. Such information would be quite useful to decipher the topol-
ogy or architecture of a multiprotein complex, which is typically identi-
fied by the aforementioned MS analysis.

Conversely, it is possible that the expression of Z suppresses or elimi-
nates the two-hybrid interaction between X and Y. We can then assume 

Figure 10. A three-hybrid system to analyze complex interactions.
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that X (or Y) and Z bind Y (or X) in a mutually exclusive manner, sug-
gesting that the interaction around X–Y may well constitute a switch in 
the network.

In a similar context, it is also possible to screen peptide inhibitors of 
X–Y interaction using this system. Furthermore, integration of the dual-
bait system would enable one to search peptides inhibiting X–Y interac-
tion, but not other similar interactions. Such inhibitors can be used as 
specific perturbagens that are useful for systems analysis.

2.6. Other Two-Hybrid Systems

Although the two-hybrid system was developed in yeast, it is possible to 
construct a similar system in other organisms. Indeed, two-hybrid systems 
in E. coli and mammalian cells were developed. Although the former 
works faster than Y2H, the folding of eukaryotic proteins, especially 
those bearing multiple domains, would be compromised. Conversely, 
the latter may be ideal for mammalian proteins to fold correctly and to 
be modified, but is not suitable for library screening and large-scale 
applications.

Similarly, although Y2H was developed using transcription factors, it 
is possible to develop a two-hybrid system based on the interaction-
mediated reconstitution of other protein activities. For instance, an inter-
esting method called split ubiquitin system was developed to examine 
PPIs, especially those involving membrane proteins (47) (Figure 11). 

Figure 11. A split ubiquitin system to examine interactions between integral 
membrane proteins.
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Ubiquitin is a small protein comprising 76 amino acids, and it functions 
as a tag for protein degradation and intracellular sorting. In the split 
ubiquitin system, ubiquitin was divided into its N-terminal half (N-ub) 
and C-terminal half (C-ub). Two membrane proteins of interest, namely, 
X and Y, were fused at its cytoplasmic portion with N-ub and C-ub, the 
latter of which was further fused with an artificial transcription factor, 
PrA-LexA-VP16 (PLV). If X and Y interact on membrane, the N-ub and 
C-ub were put in close proximity to reconstitute a ubiquitin molecule 
beneath the cytoplasmic surface. The reconstituted ubiquitin molecule is 
recognized by ubiquitin-specific proteases that cleave at the C-terminal 
end of ubiquitin. The cleavage liberates PLV, and it migrates into the 
nucleus to induce the expression of reporter gene. If X and Y do not 
interact, PLV is kept tethered to the membrane, failing to activate the 
expression of the reporter gene. The split ubiquitin system is quite useful 
for the detection of interactions among membrane proteins, and it was 
used for a large-scale analysis of interactions among yeast integral mem-
brane proteins (48). Various modifications similar to those described for 
conventional Y2H would be applicable to this system, further improving 
its usefulness.

3. Conclusion

Systematic identification of PPIs or interactome mapping has been 
achieved by MS- and Y2H-based approaches. Although other potential 
techniques, including proteome chip (49), are being developed, only 
these two methods have thus far succeeded in the generation of large 
data sets. Besides interactome mapping, MS can be used for quantitative 
analysis of PPIs when combined with stable isotope labeling. Although 
fluorescent imaging technologies such as FERT and FCCS would provide 
data with higher spatiotemporal resolution (50,51), their throughput is 
still limited, and integration of both approaches would be desirable. 
On the other hand, Y2H is a genetic method suitable for isolation of 
mutants for interactions. Interaction-defective alleles are indispensable 
for the perturbation of PPIs, from which we can learn its biological role, 
as well as the property of the system including it. Therefore, MS- and 
Y2H-based methods for PPI analysis will stay in the toolbox for systems 
biologists.
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10
Genome-Scale Assessment 

of Phenotypic Changes During 
Adaptive Evolution

Stephen S. Fong

Summary

Adaptive evolution is a process that influences and alters all biological 
organisms over time. Changes involved in adaptive evolution begin with 
genetic mutations and can lead to large changes in phenotypic behavior. 
Thus, the relationship between genotype and phenotype is a central issue 
in studying adaptive evolution.

The whole-cell phenotype of an organism is the result of integrated 
functions at various levels of cellular organization. As methods have 
been developed and improved to study the components involved with 
the different levels of cellular organization in a high-throughput and 
genome-wide scale, it is becoming possible to establish the link between 
genotype and phenotype. In this chapter, different means of studying and 
establishing connections between genotype and phenotype in the context 
of adaptive evolution will be discussed.

Key Words: Adaptive evolution; phenotype; phenomics; transcriptomics; 
proteomics; fluxomics; metabolomics.

1. Introduction to Adaptive Evolution

Adaptive evolution is the process by which the behavior of an organism 
is adjusted in response to a stimulus (the surrounding environment). This 
process can be thought to have two main components: an adaptive com-
ponent, where specific behaviors (phenotypes) impart some benefit to 
the organism that are positively selected, and an evolutionary compo-
nent, where the beneficial behavior is maintained in the organism through 
a genetic change. The current paradigm in evolutionary biology is that 
genetic changes (mutations) naturally arise during DNA replication, 
thus creating a heterogeneous population. Within this population, muta-
tions that confer a beneficial phenotype (fitness advantage) are selected 
and propagated in subsequent generations (Figure 1). Thus, this entire 
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process is an elegant example of the interrelatedness of the genotype 
and phenotype.

Although the adaptive evolutionary process is common to all biologi-
cal organisms, microorganisms, in particular, have been frequently uti-
lized in experimental research to study the evolutionary process. 
Microorganisms have several beneficial attributes that make them con-
ducive to experimental evolution studies (1) including the ability to 
carefully control growth environments and evolutionary selection pres-
sure, fast generation times, and relatively small genome sizes. Laboratory 
experiments using microorganisms can thus be used to study adaptive 
evolution in real-time, and to attempt to determine some of the links 
between genotype and phenotype.

The simplest means of conducting a laboratory evolution experiment 
would be to grow a culture of an organism and to transfer some of the 
population to a new culture after the nutrients in the medium have been 
depleted. This process of serial passage of batch cultures is continued for 
the duration of the evolution experiment (2). By using this process, thou-
sands to tens of thousands (3) of generations can be observed often 
resulting in large phenotype changes, such as growth rate increases of 
more than 100% (4,5) or adaptations that facilitate growth in stressful 
environments (6,7).

2. Adaptive Evolution and Systems Biology

Although the field of evolutionary biology has become defined in scope 
through the course of theoretical and experimental developments over 
history, the nascent field of systems biology is not as clearly defined. It 
is therefore important to begin with describing the perspective of systems 
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Figure 1. Schematic representation of population dynamics during adaptive evo-
lution. As neutral mutations (dashed lines) accumulate, an adaptive mutation can 
occur that confers an evolutionary benefit allowing a mutant carrying the adap-
tive trait to overtake the population.
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biology that will be used in this section and how it relates to evolutionary 
biology and adaptive evolution. Thus far, systems biology has been char-
acterized by high-throughput methods of generating data at different 
levels of cellular organization (“omic” datasets) and developing methods 
to manage, analyze, and interpret these large datasets. These, however, 
are only the tools implemented in systems biology, and alone they are 
not sufficient to define systems biology. The field of systems biology has 
been developed out of the belief that biological systems are complex, 
highly interconnected systems and that it is through the study of intact 
systems (and the connections in an intact system) that new insight into 
biological function will be obtained. The simultaneous measurement of 
all cellular components of a given type (mRNA transcripts, proteins, 
metabolites, etc.) should allow for details of the interconnectedness of 
these components to be studied. It is the eventual goal to not only inter-
pret and understand the relationships between all cellular components 
of one type (all mRNA transcripts), but then to establish connections 
between different levels of cellular organization (mRNA transcripts and 
metabolites) to establish how a specific genotype will be manifested in 
terms of phenotype.

Adaptive evolution is a fascinating biological process from the per-
spective that large phenotypic changes can arise because of systemic 
changes and become permanent within a population. Given a long 
enough period of time with exposure to a stimulus, the behavior of an 
organism is refined in a coordinated manner, as combinations of cellular 
adjustments are evaluated and selected as a result of evolutionary selec-
tion pressure. In this manner, systematic optimization of an organism’s 
functionality for a specific stimulus occurs. The changes occurring during 
adaptive evolution can potentially be anywhere within the biological 
system and can affect single proteins or entire regulatory, signaling, or 
other functional modules.

As systems biology is interested in studying how biological systems 
function in a coordinated manner and, ultimately, how genotypes are 
translated into phenotypes, adaptive evolution is a good process to study 
using the systems biology approach. Genetic changes in the form of 
mutations naturally arise and accumulate over time during evolution and 
these give rise to altered phenotypes. This process gives a situation where 
both genotype and phenotype are modified in a directed, biologically 
significant fashion.

Laboratory studies of adaptive evolution, where both genotype and 
phenotype concurrently change, are a good reflection of real biological 
evolution; however, it also complicates results and analysis. In most 
systems biology studies, the biological system being studied is defined
by the known starting genotype (often specific genetic alterations 
are introduced) such that the topology of the functioning biological 
network is known. Measurements are then made to determine how an 
organism uses different portions of its biological capabilities to exhibit 
a phenotype. In the case of adaptive evolution, the problem arises that 
the genotype changes in an unknown manner because of random muta-
tions. This means that measurements need to determine both how the 
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network is used in expressing a particular phenotype and also how the 
network itself may have fundamentally changed in structure or function 
(Figure 2).

3. Genotype to Phenotype in Adaptive Evolution

Fundamental to cell biology is the central dogma of molecular biology 
that describes the progression from DNA to proteins that will ultimately 
play a role in the manifested phenotype. Understanding this progression, 
how the genotype relates to phenotype, is one of the largest current 
challenges in biology and has become a focal point of research because 
genomic data have become readily available for hundreds of organisms 
over the past several years, starting with the complete genome sequenc-
ing of Haemophilus influenzae (8).

The genotype of an organism can give an indication of the gene content 
of an organism, roughly giving the equivalent to a “parts catalogue” of 
what proteins are potentially present in the organism (9). This defines
the potential capabilities of the organism, but gives little indication of 
how these parts are assembled or used. This genomics aspect of systems 
biology essentially establishes the biological infrastructure of an organ-
ism, giving the hard-wired structure of the organism’s biological network. 
In this view, the amount of functional biological information that can be 
obtained directly from DNA sequencing is limited.

Figure 2. Schematic representation of the systems biology methodology used to 
study adaptive evolution.
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As one seeks to connect genotype to phenotype, the problem involves 
associating structure (genotype) to function (phenotype). Given the 
complexity of biological systems and the multiple layers of biological 
organization, the connection between genotype and cellular phenotype 
is indirect. The indirect connection between genotype and phenotype is 
in part demonstrated in evolutionary biology through the fact that geno-
type mutation rates and phenotype mutation rates (at the cellular level) 
in a given system are highly disparate (10). The indirect nature of the 
genotype–phenotype relationship is one of the most confounding aspects 
of evolutionary biology, and necessitates careful experimental design in 
respect to understanding limitations to the type of information that can 
be gained from a given data type. Thus, the questions that must be 
addressed are how are we going to define the phenotype of an organism, 
and what pieces of information will be most critical to establishing a 
genotype–phenotype relationship.

Infrastructure Analogy

The biological infrastructure established by genomics can be concep-
tually equated to a road map detailing all known streets. In this case, 
individual streets would be analogous to individual chemical reac-
tions. As a cell undergoes certain biological processes, it can utilize 
combinations of different reactions to achieve a certain outcome, just 
as different streets can be used to get from point A to point B. Both 
genomics and a road map indicate possible means to reach an objec-
tive; however, neither is sufficient to select the most likely means to 
be used. It is necessary to obtain additional data (such as speed limits, 
number of traffic lights, etc.) to determine the most efficient route. 
One problem is that current genomic road maps are not complete. An 
added complication in evolution is that the biological infrastructure 
might change (construction of new roads, destruction of old roads, 
or detours), which necessitates constant reevaluation of utilized 
routings.

Genotype–Phenotype Analogy

The challenges of establishing the relationship between genotype and 
phenotype can be conceptually illustrated by the process of refining
iron ore. If the iron ore is considered to be our starting raw material 
(similar to the genotype of an organism), we would like to determine 
how this starting material can give rise to different end products 
(phenotypes), such as a steel beam or a cast-iron skillet. In this sce-
nario, knowledge of the starting point (iron ore) and end point (steel 
beam) are not sufficient to know how the steel beam was produced 
or that other types of end products could be produced from the same 
starting point. Just as details of the smelting and processing are critical 
to understanding how iron ore is transformed into an end product, so 
too are details of the biological progression from genotype to pheno-
type needed.
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4. Genome-Scale Phenotype Assessment

In the most general sense, a phenotype can be viewed as any detectable 
characteristic of an organism for a given environment. These “detectable 
characteristics” can include any quantifiable biological property, from 
growth rates to production of cellular components. High-throughput, 
genome-scale measurements of biological traits or characteristics are 
thus used to elucidate the functional consequences of genotypic or envi-
ronmental changes. This field of study has broadly been termed “phe-
nomics” (11), and the types of measurements used can be divided into 
two main categories: measurement of whole-cell phenotypes and mea-
surement of cellular components (Figure 3).

4.1. Whole-Cell Measurements

Whole-cell phenotype measurements are conducted on intact, living cells 
and are quantified observations of how an organism is functioning in a 
given environment. Characteristics such as growth rate, consumption 
rates, metabolite secretion, and motility can be categorized as whole-cell 
phenotypes. These whole-cell phenotypes represent the integrated 
behavior of the organism and are often subject to evolutionary selection 
pressures. Thus, although measurement of whole-cell phenotypes can 
give insight into evolutionary outcomes and selection, these measure-
ments typically are not detailed enough to elucidate specific mechanistic 
changes at the molecular level.

4.1.1. Cellular Growth Rates
The evolutionary concept of natural selection stipulates that individuals 
that are more successful at producing progeny will out-compete those 
who are not as successful at producing progeny. In the microbial world, 
this is translated into a scheme where faster growing cells will tend to 
out-compete slower growing cells. This represents the most common and 
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Figure 3. Illustration depicting examples of different whole-cell phenotype mea-
surements and cellular component phenotype measurements.
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widely applicable evolutionary scenario; thus, detailed quantitative mea-
surements of microbial growth rates are often essential to studying 
microbial adaptive evolution. Small differences in cellular growth rates 
of a mixed population, when propagated over thousands of generations, 
can lead to one subpopulation becoming dominant and another sub-
population becoming extinct.

For microorganisms, the specific growth rate can be easily and pre-
cisely measured in a growing liquid culture by determining the change 
in optical density (OD) time. At low cell densities, the OD is proportional 
to the cell density so during exponential microbial growth, the specific
growth rate is found to be the slope of log-scale plot of OD versus time. 
A related metric that is often useful in microbial systems is the doubling 
time (time necessary for the population to double in size), which is 
given as:

Doubling time =
ln 2

Growth rate
( )

.

In evolutionary studies, quantitative growth rate measurements can be 
used to monitor subpopulation dynamics as the microbial population 
evolves in a specific growth environment. These measurements are used 
to determine the speed and magnitude of phenotypic changes during 
evolution (Figure 4A). In addition, evolving populations can be tested 
for growth on a panel of different nutrient conditions (Figure 4B). These 
measurements indicate the robustness of the evolutionary changes being 
retained, and may also give some leads into specific subsystems that may 
have changed during evolution (4,12).
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Figure 4. Sample results of high-throughput growth rate measurements for 
adaptive evolution. (A) Quantitative measurements of growth rates over the 
course of adaptive evolution showing growth rate versus evolutionary genera-
tion. (B) Growth rate testing in different growth environments where 7 different 
populations were tested for growth in 5 different growth conditions.
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The direct measurement of the specific growth rates for microbial 
cultures can be conducted in a high-throughput manner using plate-
reader systems. Quantitative growth rate measurements can be con-
ducted in parallel, with hundreds of cultures being monitored 
simultaneously in plate-reader systems that have an optical device 
to detect OD, agitation for culture aeration, and temperature control 
for incubation (e.g., VersaMaxTM system by Molecular Devices and the 
Bioscreen CTM system by Thermo Finnigan).

4.1.2. Cellular Respiration
A whole-cell phenotype that can be measured and is closely related to 
cellular growth is cellular respiration. A high-throughput means of moni-
toring cellular respiration has been developed by associating cellular 
respiration with a colorimetric change. Using this principle and proprie-
tary chemistry, the Phenotype MicroarraysTM developed by Biolog (13) 
can be used to test for cellular respiration under thousands of different 
growth conditions. Respiration is indicated by a positive colorimetric 
change, whereas the absence of respiration results in no colorimetric 
change.

A second method of monitoring cellular respiration has been devel-
oped, implementing a device that fluoresces in the absence of oxygen 
(Becton, Dickinson and Company). The device is placed in the bottom 
of a microplate well to which cells and media are added. For a dilute 
culture (when the culture is first inoculated), the cells will not utilize all 
of the available oxygen dissolved in the medium, so oxygen will reach 
the bottom of the well and quench the fluorescence of the insert. As the 
culture grows, the cells will begin to utilize all of the available oxygen, 
thus not allowing any oxygen to reach the device at the bottom of the 
well and the insert fluoresces.

High-throughput measurements of cellular respiration are reliant on 
secondary indicators (colorimetric or fluorescent changes) to monitor 
respiration, and thus are only semiquantitative in nature. Although these 
measurements are not as accurate as a direct measurement of cellular 
growth, they do provide a measure of oxygen consumption and respira-
tion rate that are not determined in normal growth rate testing.

4.1.3. Metabolite Secretion
As cells live and grow, they consume nutrients and convert them to 
needed biomolecules through metabolic reactions. In all cases, the net 
result of the metabolic reactions is that cells produce chemical byprod-
ucts that are often released into the environment. Analysis and quantita-
tive measurement of the produced chemicals is another important 
characteristic of whole-cell phenotypes.

One of the most commonly used methods to characterize chemical 
compounds secreted during microbial growth is to use high-performance 
liquid chromatography (HPLC). In this analysis, secreted chemical com-
pounds are maintained in liquid solution and mixed with a mobile phase 
solution. This liquid mixture is separated in a chromatography column 
where different chemical compounds are delineated by their chemical 
properties (size, polarity, chemical affinity to column packing). After 
separation in the chromatography column, amounts of each chemical are 
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quantitatively measured using a detector (typically, ultraviolet or refrac-
tive index). In this manner, many secreted chemical compounds can be 
quantitatively measured in a single experimental run.

Although HPLC analysis is an established and commonly used method 
for measurements of extracellular metabolites, it is limited in its detec-
tion capabilities. A method using mass spectrometry called “metabolic 
footprinting” (14) has been developed to expand the ability to detect and 
quantitatively measure extracellular metabolites. Although the sample 
preparation in metabolic footprinting is similar to that in HPLC, identi-
fication of compounds is more precisely accomplished through measure-
ments of chemical masses. In addition, the quantitative detection range 
for mass spectrometry is larger than the detection range of HPLC detec-
tors, so more chemical compounds (especially those with low concentra-
tion) are analyzed.

Quantitative analysis of secreted chemical compounds is an important 
aspect of whole-cell phenotypes that can be measured in a high-
throughput manner. Although this aspect of the phenotype is seldom 
under direct evolutionary selection pressure, it can play important sec-
ondary roles in evolutionary survival, and is of primary interest in meta-
bolic engineering applications. With the increased detection capabilities 
demonstrated in metabolic footprinting studies (14), it has become pos-
sible to extrapolate certain details about the internal functional state 
of an organism, such that properties like metabolic efficiency and path-
way usage can be characterized.

4.2. Genome-Scale Cellular Component Measurements

Genome-scale measurements of cellular components are conducted by 
pooling populations of cells and processing them to isolate components 
of interest. These typically include mRNA transcripts, proteins, and intra-
cellular metabolites. Although whole-cell phenotype measurements are 
primarily concerned with determining what a cellular response is in a 
certain environment, measurements of cellular components are more 
directed toward determining how a certain cellular response is mani-
fested. In studying the genotype–phenotype relationship, genomics spec-
ifies the genotype, whole-cell phenotype measurements are the phenotype, 
and changes in the cellular components can be viewed as the links 
between the two. The main focus and challenge of studying cellular com-
ponents in an evolutionary setting is to differentiate causal from non-
causal changes. A causal change would directly influence the manifested 
whole-cell phenotype, whereas it is possible to have changes in specific
cellular components that do not affect the whole-cell phenotype 
(noncausal).

4.2.1. mRNA Transcripts
Genome-scale measurement of messenger RNA (mRNA) transcripts 
was the first of the high-throughput, omic data types to be developed 
and implemented. Concurrent measurement of all known mRNA tran-
scripts using spotted microarrays or synthesized oligonucleotide arrays 
can be used to determine the relative abundance of individual genes. In 
terms of the molecular biology progression, the mRNA transcripts for 
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individual genes are the next major biological component derived from 
DNA, and they can yield insight into transcriptional and regulatory 
mechanisms.

As the most established high-throughput cellular component data 
type, genome-wide analysis of mRNA transcripts has been used in a 
handful of studies on experimental adaptive evolution (15–18). In all of 
these cases, the genetic mutations that occurred during evolution were 
unknown, so one of the overall goals of the transcriptional analysis was 
to determine what mechanistic changes occurred in the evolution popu-
lations. Genome-wide transcriptional analysis typically led to the impli-
cation of several specific changes at the gene expression level; however, 
results were also typically limited by the statistical confidence generated 
during data processing and analysis.

Genome-wide mRNA transcript analysis is the most well developed 
and widely accessible cellular component data type. This data type can 
give insight into the transcriptional state and regulatory network of a 
cell. When applied to studying adaptive evolution, the most significant
problem is differentiating causal from noncausal gene expression changes. 
Because mRNA transcripts are closely related to DNA, they can be used 
to study the transcriptional process, but they are far removed from the 
whole-cell phenotype, so it is often difficult to directly establish that a 
change in mRNA transcript abundance directly affects the observed 
whole-cell phenotype.

4.2.2. Proteins
Genome-wide analysis of protein quantities, or proteomics, is one of the 
most recently developed analytical methods, and it is still being refined.
In the biological setting, DNA is transcribed to RNA that is translated 
to proteins. It is at the protein level that biological functionality is pri-
marily determined, as proteins act as enzymes to mediate biochemical 
reactions in vivo. Proteomic methods typically involve a derivatization 
step for the sample preparation and mass spectrometry for identification
and quantitation of protein levels.

Quantitative measurements of protein levels is generally thought to 
be a more functionally important measurement than measurement of 
mRNA transcripts, as the proteins are the metabolically active biological 
component. Although an increase in mRNA transcript levels should lead 
to an increase in the amount of protein, this may not always be true, so 
a direct measurement of the proteins is more reliable.

The major concern with implementing proteomics to evolutionary 
studies is connected to the fact that proteins carry out enzymatic func-
tions in a biological setting. Mutations during adaptive evolution can lead 
to small and subtle differences in DNA that in turn can lead to a differ-
ent amino acid sequence during translation from RNA to protein. This 
change can greatly affect the enzymatic function of a protein. Thus, as 
the functional efficiency of a protein is independent from the amount of 
protein measurements of protein levels may not be sufficient to indicate 
net functional changes. It is possible to have a lower quantity of a protein, 
but improved enzymatic efficiency, such that the overall effect is increased 
throughput by that protein.
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4.2.3. Fluxes
Closely related to proteomics is the genome-wide measurement of meta-
bolic fluxes, fluxomics (19). Proteomics is concerned with measuring the 
quantities of proteins, but is limited in its ability to evaluate changes in 
protein function. Because enzymatic proteins functionally mediate 
chemical reactions, changes in protein function can be determined by 
measuring changes in the flux through the chemical reactions. This is the 
aim of fluxomics.

Fluxomic measurements are conducted by culturing cells in medium 
with carbon substrates containing mixtures of different carbon isotopes. 
Labeled carbon atoms are processed and incorporated into different 
biological molecules that can be isolated and analyzed using mass spec-
trometry to determine the chemical pathways that were used to synthe-
size the end molecule. Typically, amino acids are isolated and measured 
using mass spectrometry in this analysis. In this manner, intracellular 
functional data can be obtained in terms of the usage of specific meta-
bolic pathways.

Fluxomic measurements have been successfully used to study several 
different biological systems, including adaptive evolution (20), and 
fluxomics has become a highly reproducible method. Currently, two main 
concerns limit the application of fluxomic measurements. The major 
current limitation with fluxomic measurements is that the level of detail 
that can be obtained is very limited. Organisms typically contain on the 
order of hundreds to thousands of possible chemical reactions, but 
fluxomic measurements are normally only able to distinguish flux splits 
for 20–30 points in the metabolic network. This means that detailed 
flux measurements for a large number of individual reactions is not pos-
sible. Another consideration is that some knowledge of the metabolic 
network being studied is necessary before metabolic flux analysis can be 
conducted.

4.2.4. Metabolites
In parallel with the development of proteomics and fluxomics, methods 
for genome-wide intracellular metabolite analysis have arisen. The 
common factor-facilitating progress in proteomics, fluxomics, and metab-
olomics has largely been the improvements to and availability of mass 
spectroscopy. In the case of metabolomics, the technical capabilities of 
the equipment are a critical component in determining the quality of the 
results that can be obtained. Organisms can contain well over a thousand 
different chemical compounds, some of which may be present in nano-
molar concentrations, so the ability of the mass spectrometer to accu-
rately and reproducibly detect low-concentration chemicals will greatly 
affect results.

The ability to quantitatively measure genome-wide intracellular 
metabolites would yield complementary data to compensate for current 
limitations of proteomics and fluxomics. Changes in metabolite concen-
trations will reflect functional changes in enzymes, as alterations in reac-
tion rates will either deplete or build up metabolite pools. Also, if a 
sufficient number of metabolites are positively identified, then a high 
level of detailed pathway-specific information can be obtained.
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Despite the promise of genome-wide metabolomics analysis, the use 
of metabolomics is currently hindered by several technical limitations. 
Although some mass spectrometers are able to detect thousands of 
chemical compounds in an experimental run, it is often a long and diffi -
cult process to positively identify each of the compounds. Reproducible 
methods for sample preparation are also a concern, as intracellular 
metabolites can be quickly degraded. In application, this degradation 
problem, along with other sample preparation steps, has often led to wide 
variation in the reproducibility of metabolomics measurements.

5. Summary

The process of adaptive evolution can lead to large and system-wide 
changes in an organism. These characteristics make the systems biology 
approach well suited to analyzing and understanding adaptive evolution. 
Evolutionary changes in genotype and whole-cell phenotype can be 
measured, but are so disparate in nature that it is difficult to determine 
how the two are connected from these measurements alone. Insight into 
the connection between genotype and phenotype can be obtained using 
high-throughput, genome-wide analyses, such as transcriptomics, pro-
teomics, fluxomics, or metabolomics. Each of these different analyses can 
contribute unique information about the functional state of an organism, 
but each also has distinct limitations that must be considered. Often, 
combining the strengths of different analyses can compensate for limita-
tions of certain data type, such that the most useful current approaches 
integrate different data types representing different levels of cellular 
organization.
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Location Proteomics
Ting Zhao, Shann-Ching Chen, and Robert F. Murphy

Summary

Location proteomics is the systematic study of subcellular locations of 
proteins. It seeks to provide a thorough understanding of location pat-
terns and integrate such knowledge into systems biology studies. Prog-
ress in this field depends on the quantitative and automated analysis of 
images of location patterns. This chapter introduces various approaches 
to such analysis and summarizes successes in using them to investigate 
different image types and different cell types.

These approaches can be divided into two categories, feature-based 
analysis, and pattern modeling. In feature-based analysis, each image is 
converted into a feature vector and all further analysis is carried out on 
the features. This has enabled the automated comparison, classification,
and clustering of location patterns on a large scale. An important conclu-
sion from this work has been that, at least for certain problems, comput-
erized analysis can perform better than visual examination. To take a 
further step, object-based models have been built to describe location 
patterns in a compact and portable form. This facilitates more compli-
cated analysis, such as the decomposition of patterns that are themselves 
mixtures of more basic patterns. Moreover, generative models can be 
learned from collections of images so that new examples of location pat-
terns can be synthesized from them. This provides a way to integrate 
location information into systems biology, by combining generative 
models of many proteins and using the synthesized images as initial 
conditions for cell behavior simulations.

Key Words: Protein subcellular location; subcellular location trees; sub-
cellular location features; fluorescence microscopy; pattern recognition; 
cluster analysis; protein distribution comparison; CD tagging.

1. Introduction

In the past decade, a major focus of biological research has become the 
creation of comprehensive, systematic databases describing different 
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biological phenomena. For instance, biological macromolecules have 
been studied extensively with respect to their sequences, structures, 
expression levels, and interactions. The availability of these data has 
enabled the growth of a new field, systems biology, which seeks to 
construct models of complex biological systems at many levels of 
organization.

Proteomics projects provide systematic information about the charac-
teristics of an entire proteome. Proteins can support the structure and 
shape of the cell, they serve as transporters and receptors to mediate 
flow among tissues, cells, and organelles, and they catalyze most meta-
bolic reactions in a cell.

A major focus of current research is on understanding signaling net-
works in cells. A network can be represented by reaction–diffusion equa-
tions relating different species within or between compartments. In some 
cases, good approximations can be achieved by assuming a homogeneous 
distribution of molecules in the equations, but information regarding the 
actual spatial distributions of molecules can lead to a more thorough 
understanding of the networks. This is especially important for proteins 
whose functions are highly related to their locations. For example, 
external stimuli or mutation can change protein location, and a mislocal-
ized protein can produce a diseased cell (1). This illustrates the impor-
tance of integrating high-resolution subcellular location information 
to build an accurate model of cell pathways. In a review of signaling 
networks, White et al. (2) suggest that “an important next step is to 
develop a high resolution map of signaling networks in living cells, and 
the location of interacting signaling units (i.e., hubs, motifs, and modules) 
relative to cell structures like the plasma membrane, mitochondria, the 
nucleus, etc.”

Toward this end, the goal of location proteomics is to generate knowl-
edge of location patterns and organize it so that it can be easily integrated 
into systems biology studies. Efforts in this area can be divided into three 
types. The first is knowledge-capture approaches, which seek to collect 
existing unstructured information about location and place it in a system-
atic framework. These efforts make use of a standardized vocabulary 
or ontology that defines the location categories and the relationships 
between them. The most widely used ontology for this purpose is the 
cellular component ontology created by the Gene Ontology Consortium 
(3). Databases containing GO terms for many proteins have been assem-
bled. However, there are three significant limitations of knowledge 
capture approaches for location. The first is that, of course, they are 
limited to proteins that have been previously studied and reported on in 
the literature. The second is that assignments are primarily made by 
human curators based on reading journal articles, leading to potential 
inconsistency in these assignments (both for two different curators anno-
tating the same protein pattern and for the same curator at different 
times). The third is that text-based descriptors do not adequately capture 
the complexity of patterns displayed by proteins within cells.

The second type of approach to protein location seeks to bridge the 
gap between proteins whose location is known and those whose location 
is not known by predicting location from sequence. A variety of methods 
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have been used, all of which group known proteins by location and seek 
rules that can assign new proteins to one of those groups (4–8). This 
highlights the major limitation of this approach, which is that a limited 
number of classes are used (typically just the major organelles). There are 
typically also limited numbers of well-characterized training examples.

The third, and most expensive, type of approach is the direct determi-
nation of subcellular location. When properly applied, this approach can 
avoid all of the limitations described above, and, it is important to note, 
can provide more and better training data for location prediction systems. 
The remainder of this chapter will focus on methods for determining 
subcellular location, especially focusing on automated methods. Our lab 
has worked on designing such automated systems over the past 10 years. 
These systems are based on combining informative numerical features 
with powerful machine-learning methods to recognize subcellular loca-
tion patterns objectively (9) or to objectively group proteins by their 
location patterns (10). We are also working on building generative models 
to describe protein distributions. Such models are especially helpful for 
cellular simulation, which has been listed as one of the 10 bioinformatic 
challenges for the next decade (11).

2. Approaches to Determining Subcellular Location

2.1. Protein-Tagging Methods

Although some systematic studies of protein location have been carried 
out using cell fractionation (12–14), microscopy is the major method 
used for this task. With some exceptions, the major type of microscopy 
used has been fluorescence microscopy. In this technique, proteins are 
tagged with fluorescence probes that absorb light of a specific wave-
length range and emit light of a different (usually higher) wavelength. 
The emitted light can form an image of the location pattern of interest 
in a microscope.

The most widely used technique to tag a protein is immunofluores-
cence, in which a complex of fluorescent dye molecule and antibody 
attaches to a specific protein as an antigen. Usually two antibodies are 
used. The first, or primary, antibody is specific to target the protein of 
interest but has no dye molecule attached. The dye is conjugated to a 
secondary antibody, which has high affinity for the primary antibody. 
The secondary antibody can often recognize all antibodies derived from 
a given species, so a single dye-coupled antibody is reusable for a set of 
primary antibodies.

The availability of antibodies can limit the utility of immunofluores-
cence (or immunohistochemistry, in which a chromogenic probe is used 
instead of a fluorescent probe) for comprehensive tagging purposes. 
Another disadvantage is that immunotechniques cannot be used to 
observe living cells.

A powerful alternative to immunofluorescence is tagging proteins by 
fusing their coding sequence with that of green fluorescence protein 
(GFP) or other fluorescent proteins. To tag a protein of interest, mole c-
ular biology techniques are used to combine the coding sequence of 
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GFP with the coding sequence of the protein (this approach can be used 
for cDNA or genomic DNA). The result is a sequence that codes for a 
combination of the original protein and GFP. Because the mechanism is 
general, it is well suited for tagging each member of a set of proteins. 
However, the possibility that the GFP can alter the properties of the 
tagged protein must be considered.

2.2. Subcellular Location Image Databases

In recent years, proteins in organisms from yeast to human have been 
visualized and several databases of the images have been created 
(Table 1). These projects are discussed below.

A subcellular location database for the yeast Saccharomyces cerevisiae
has been created by Huh et al. (15). The proteins were tagged with GFP 
at the C-terminal end through homologous recombination. A total of 
6,029 genes were tagged, of which 4,156 yielded significant fluorescent
signal upon expression. Images of these were taken using a digital 
imaging-capable Nikon TE200/300 inverted microscope at 100× magni-
fication. Based on visual inspection and co-localization experiments, the 
authors assigned one or more of 23 location labels to each of the 4,156 
proteins.

A similar approach has been applied to characterize the location of 
uncharacterized coding regions in the human genome. In this project, 107 
open reading frames (ORFs) were examined (16). The cDNA sequence 
for each ORF was fused with the GFP coding sequence in a constitutive 
expression vector. Monkey Vero cells were transfected with the tagged 
cDNAs and imaged using a Leica DM/IRBE microscope at a 63× mag-
nification. Locations were assigned to each fusion protein by visual 
inspection. For proteins whose locations could not be identified visually, 
or proteins whose N- and C-terminal fusion localizations were not identi-
cal, the authors used predictions from their sequences to assign them.

Table 1. Protein subcellular location databases.
Project Tag Expression Live/Fixed Resolution Analysis Species
Yeast GFP Fusion GFP fusion Endogenous Live High Visual Yeast
Localization to C terminus   (100¥)
Database
(yeastgfp.ucsf.edu)

GFP-cDNA GFP fusion Transfection Live High Visual Human
Localization to C terminus   (63¥)  (transfected
Project      into
(gfp-cdna.embl.de)      monkey

cells)

CD-tagging Internal GFP Endogenous Live High Visual Mouse
(cdtag.bio.cmu.edu) fusion   (60¥)

Protein atlas Immunohisto- Endogenous Fixed Low Visual Human
(www.proteinatlas.org) chemistry  (Formalin) (20¥)

with
monospecifi c
antibodies

PSLID Immunofluorescence Both Both High Automated Mouse
(murphylab.web. and GFP   (60–100¥)  and
cmu.edu/services/      Human
PSLID)
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An alternative approach to creating GFP-fusions has been used in the 
CD-tagging project (17,18). CD tagging creates internal GFP fusions 
rather than terminal fusions. An engineered retroviral construct is created 
containing the GFP coding sequence flanked by splicing acceptor and 
donor sites. Infection of cells by the retrovirus results in undirected 
(approximately random) insertion into the genome. If the insertion 
occurs in the proper reading frame in an intronic region, a new GFP exon 
is created between two exons. Stable clones that express different tagged 
proteins can then be isolated, and the tagged gene identified by RT-PCR 
(17). The advantage of this genomic-tagging approach is that endogenous 
regulatory sequences are preserved and thus, normal levels of expression 
occur. Several mouse NIH 3T3 clones were created by this approach (17), 
and high-resolution images were collected (19). The patterns in these 
images were automatically analyzed using the methods described in the 
following sections.

Yet another approach to analysis of protein location has been taken 
by the Protein Atlas project, which has focused primarily on determining 
protein location at the cellular level within tissues, but also provides 
some information on subcellular location. The Protein Atlas database 
contains images for more than 700 proteins in 48 normal human tissues 
and 20 different cancers (20). The proteins analyzed included five major 
types of protein families: receptors, kinases, phosphatases, transcription 
factors, and nuclear receptors. Proteins were tagged by immunohisto-
chemistry using well-characterized, monospecific primary antibodies and 
secondary antibodies (conjugated with horseradish peroxidase) in human 
tissue microarrays. The microarrays were scanned using an automated 
slide-scanning system at 20× magnification. The resulting images were 
annotated by visual inspection by pathologists.

3. Automated Analysis of Subcellular Patterns

As discussed in the previous section, most interpretation of subcellular 
location patterns has been performed by visual examination, with or 
without comparison to marker proteins whose location has been charac-
terized. Visual examination has disadvantages when considered in the 
context of proteome-wide location analysis. It is very time-consuming for 
researchers to examine thousands or tens of thousands of images. Even 
when this is not an issue, the results are a qualitative description using 
words, which limits the resolution with which determinations can be 
made. Last, interobserver variation can be significant.

Therefore, we have developed methods for automated analysis of 
subcellular patterns. These systematic methods, for the first time, yielded 
quantitative descriptions of subcellular location patterns, and they have 
enabled the field of location proteomics. The remainder of this chapter 
will provide a review of these methods.

3.1. Subcellular Location Features

A key to the success of automated systems for subcellular pattern analy-
sis is the design of good numerical features to capture essential informa-
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tion from images without being overly sensitive to variations induced by 
cell shape or orientation. We have defined several sets of features to 
describe protein subcellular distributions in fluorescence microscope 
images. Each image can then be quantitatively represented as a point in 
an n-dimensional feature space (where n is the number of features used). 
With this mathematical description, we can apply statistical and compu-
tational methods to analyze groups of images.

Many types of features have been investigated in the field of computer 
vision, including features designed to characterize colors, textures, and 
edges. Some types of features are quite general and can be applied to 
many different applications, but others are more specific to each applica-
tion. For example, for the purpose of computer recognition of faces, fea-
tures such as the distance between the eyes or the height of the nose are 
often used.

For cultured cells grown on a surface, there is typically no significance
to a cell’s position or orientation in a field. It is therefore desirable to 
design features that are translationally and rotationally invariant, as well 
as robust to variations in cell size and shape. We have described several 
such features of various types, which we term subcellular location fea-
tures (SLFs). Tables 2 and 3 contain brief summaries of the types of 
SLFs we have used for 2D and 3D images, respectively. Figure 1 shows 
examples of some of these features for two 2D images with different 
location patterns. More detailed descriptions of these features are avail-
able in recent reviews (21,22) and also at http://murphylab.web.cmu.edu/
services/SLF/.

Table 2. Summary of 2D SLFs.
Features for 2D Images Description

Zernike moment features  49 features that are calculated as the dot product 
between a normalized cell image and each of 
the Zernike polynomials up to order 12

Haralick texture features  13 features calculated as the statistics of a 
gray-level cooccurrence matrix formed after 
down-sampling the image to a specified number 
of gray levels (if necessary)

Morphological features  16 features that capture information about the 
number, size, shape, and position of fluorescent
objects in an image

Wavelet features  30 features that are the average energies of the 
coefficients from a Daubechies-4 wavelet 
transform at various levels; 60 features 
calculated using Gabor transforms of various 
orientations and scales

DNA features  6 features calculated by comparison with a 
parallel DNA image (when available)

Edge features  5 features that measure the fraction of protein 
along edges and the homogeneity of edge 
orientation

Nonobject features  1 feature calculated as the fraction of fluorescence
that is not found in objects (i.e., fluorescence in 
below threshold pixels)
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3.2. Segmentation of Images into Single Cell Regions

The success of subcellular location pattern analysis often requires seg-
mentation of images into single-cell regions. Because of the large varia-
tions of image patterns resulting from different imaging techniques and 
cell types, it is not always straightforward to get satisfactory segmentation 
results. When no information about cell boundaries is available, but an 
image of a DNA stain is available to allow nuclei to be found, Voronoi 
segmentation is frequently used (23). However, the resulting boundaries 
usually enclose full, single cells only when cell density is low and cells are 
well separated. To improve upon this, experiments can be designed to 
provide some information to help determine cell boundaries, such as 
staining of total protein or plasma membrane (24). When parallel images 

Table 3. Summary of 3D SLFs.
Features for 3D Images Description

3D morphological features  14 features which capture information about the 
properties of 3D fluorescent objects in the 3D 
image

3D DNA features  14 features calculated by comparison with a 
parallel DNA image (when available)

3D texture features  26 features based on the average and range of 
the 13 Haralick texture features over all 13 
directions in which pixels can be adjacent in 
3 dimensions

3D edge features  2 features calculated as statistics of the edges in 
each 2D slice of a 3D image

Figure 1. Illustration of feature extraction and classification. Example images of 
two subcellular patterns are shown, along with the values of three SLF features 
derived from morphological analysis. Note that any of the three features would 
be sufficient to distinguish the two patterns. Reprinted with permission from 
Chen et al. 2006 (39).
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of DNA and total protein are available, the seeded watershed algorithm 
(25) frequently provides good boundaries (26). However, this algorithm 
usually produces loose contours, which can also include many of the 
irrelevant background regions (27). In addition, the initial seeding can be 
error prone, and poor seeding can produce unsatisfactory results. Another 
approach is to use level set–based algorithms, which numerically optimize 
the energy in elastic functions (27). This type of segmentation can provide 
excellent performance, but can be quite computationally expensive.

3.3. Feature Selection

Once each image is segmented into single-cell regions and each cell is 
reduced to a feature vector, a wide range of machine learning methods 
can be applied. However, in many cases, the performance of these 
methods can be weakened if the feature set contains redundant or unin-
formative features. This is especially true for classification methods that 
need to find decision boundaries in a potentially large and complex 
feature space because the presence of extra features increases the com-
plexity of the search. The solution is to reduce the number of features 
by eliminating features that are uninformative (essentially the same for 
all classes) or redundant (highly correlated with another feature). Several 
methods for this purpose have been described, and we have evaluated 
them for use in the specific problem of subcellular pattern classification
(28). We found that the best combination of performance and computa-
tional speed was provided by a method known as stepwise discriminant 
analysis (SDA) (29). Using this method, we have selected a number of 
different subsets from our 180-feature SLF bank. Each set that we 
obtained is suited to a slightly different classification problem. To facili-
tate determination of exactly which features were used for a particular 
result, we have developed a nomenclature for describing each set and 
the features within it. A number preceded by the prefix SLF identifies
each set, and a particular feature within a set is referred to an index 
number preceded by the set name and a period (e.g., SLF16.5 is the fifth
feature within the set SLF16).

3.4. Classification of Static 2D and 3D Single-Cell Images

Beginning 10 years ago, our group carried out the initial demonstration 
of the feasibility of automated classification of subcellular location pat-
terns (30,31). For this purpose, we acquired extensive image collections, 
first for Chinese hamster ovary cells and then for HeLa cells. These col-
lections were obtained for paraformaldehyde-fixed cells using markers 
(either monoclonal antibodies or fluorescent probes) specific for the 
major subcellular structures. For HeLa cells, we collected high-resolution 
2D images of nine different markers (the 2D HeLa dataset). These 
included images for proteins whose patterns are similar, such as antibod-
ies against two different Golgi proteins and antibodies against lysosomal 
and endosomal proteins. In addition, markers for the actin cytoskeleton, 
the tubulin cytoskeleton, mitochondria, the endoplasmic reticulum (ER), 
and nucleoli were used. Images of approximately 100 cells were collected 
for each marker along with a parallel DNA image. The parallel DNA 
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images permitted the calculation of DNA-specific features for each 
marker, and also were used to define a tenth subcellular pattern in addi-
tion to those for the nine markers. Examples of these images are shown 
in Figure 2. Using the SLF described above, we used these images to 

Figure 2. Typical images from the 2D HeLa collection. Images are shown for 
cells labeled with antibodies against an ER protein (A), the Golgi protein giantin 
(B), the Golgi protein GPP130 (C), the lysosomal protein LAMP2 (D), a mito-
chondrial protein (E), the nucleolar protein nucleolin (F), the endosomal protein 
transferrin receptor (H), and the cytoskeletal protein tubulin (J). Images are also 
shown for filamentous actin labeled with rhodamine-phalloidin (G) and DNA 
labeled with DAPI (K). Scale bar = 10mm. Reprinted with permission from 
Boland and Murphy, 2001 (9).
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produce the first demonstration that all major subcellular location pat-
terns could be automatically recognized with reasonable accuracy. This 
task is one of supervised learning or classification, in which each instance 
(image) is known to belong to one of a set of predefined patterns (classes). 
We used images of known classes (training data) to design a specific
classifier, which can be considered as a function (but often a very com-
plicated function), to predict the class when given an image. The perfor-
mance of such classifiers is evaluated using images whose class is known, 
but were not used for training (testing data). A classifier with more pre-
dictive power will give higher classification accuracy on the testing data. 
In our initial work, the 10 subcellular patterns could be recognized with 
an overall accuracy of 84% using the SLF4 feature set (consisting of 37 
features) and a neural network classifier (9). We subsequently improved 
this performance by adding new features and using different classifiers,
with the best performance to date (92% accuracy) having been achieved 
with a majority-voting ensemble classifier and the SLF16 feature set 
(consisting of 47 features) (32).

In addition, we showed that the automated system had better 
distinguishing power than visual inspection by measuring human recog-
nition ability on the same 2D HeLa images (33). The overall accuracy 
for visual examination was 83%, which is almost 10 percentage points 
lower than the best performance of a machine classifier. The accuracies 
for each class by computer and visual analysis are compared in Figure 3. 
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Figure 3. Comparison of accuracy of human and computer classification of sub-
cellular patterns. Each symbol represents the accuracy of classification by com-
puter (19) and human (33) for a different pattern class from the 2D HeLa 
collection. In increasing order of human classification accuracy, these are gpp130, 
giantin, LAMP2, TfR, ER, tubulin, mitochondria, nucleolin, and DNA (both at 
100% for human and 99% for computer accuracy), and actin (100% for both). 
Reprinted with permission from Murphy, 2004 (40).
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The largest difference in accuracy was found for the two Golgi proteins, 
which the automated system can distinguish with an average accuracy 
greater than 86%, whereas visual examination gave an accuracy of 
approximately 50% (indicating that visual examination could distinguish 
Golgi proteins from other proteins, but not discriminate between the two 
Golgi proteins). This led to an important conclusion: automated recogni-
tion of subcellular patterns was not only feasible, but it could perform 
better than human visual inspection.

Because cells are 3D objects, we also examined whether analyzing 3D 
images would improve the performance of automated recognition. To 
this end, we collected 3D images using staining methods similar to those 
for the 2D HeLa dataset, and we designed 3D SLF features to describe 
them. Some of these features were 3D versions of the 2D features, and 
some were unique to 3D images. The 3D images were collected by laser 
scanning confocal microscopy. A parallel DNA image was again col-
lected with each marker, and, in addition, a third parallel image of the 
total protein distribution was collected after staining with an amine-
reactive fluorescent dye (26). The total DNA and total protein images 
were used to perform automated segmentation of the images into single 
cell regions using the seeded watershed algorithm (26). The initial system 
achieved an overall accuracy of 91%, and subsequent additions improved 
this to 98% (34). In this case, even similar patterns such as the two Golgi 
proteins could be distinguished with near perfect accuracy. The conclu-
sion from the work to date is that methods for building automated 
systems to assign proteins (or other macromolecules) to one of the major 
subcellular structures have been carried out well for 2D and 3D images, 
and that collection of high-resolution 3D images is desirable to achieve 
the best results possible.

Subsequent work on applying these methods to images collected by 
automated microscopy has yielded somewhat lower classification accura-
cies (35). Whether this is because of possible perturbations of subcellular 
patterns that might be induced by transfection reagents used to express 
GFP-tagged markers, the use of undeconvolved wide-field images, the 
use of lower magnification, or differences in cell line or computational 
implementation (or some combination of these factors) remains to be 
determined.

3.5. Classification of Other Types of Images

The features and classifiers described above have been designed for the 
analysis of single-cell regions of static (single time point) images of live 
or fixed samples. Subsets of these features that do not require segmenta-
tion (and are approximately independent of the number of cells in an 
image) can also be created. We have shown that these features are able 
to achieve reasonable classification accuracy on multicell images created 
from the 2D HeLa dataset.

Some of the SLFs are averages of features that describe the size, shape, 
and position of individual objects in a cell (in this context, an object is 
considered to be a contiguous set of pixels that are above an automati-
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cally chosen threshold). The unaveraged features can, of course, be used 
to describe those objects individually, and these can be used to create 
classifiers that recognize various types of objects (36).

When a time series image (movie) is available (either of a single 2D 
slice or of an entire 3D stack over time), additional features can be used 
to characterize the temporal behavior in a model-free manner. We have 
demonstrated that these features are useful for discriminating between 
proteins whose static patterns are similar (37).

4. Systematic Comparison and Clustering

Because the work described above shows that the SLFs are effective for 
representing location patterns, it is reasonable to also use them for other 
purposes involving interpretation of subcellular patterns. One such 
purpose that is commonly encountered is the comparison of images or 
sets of images. To measure the similarity of a pair of images, we can 
simply calculate the Euclidean distance between their SLF vectors. For 
comparing sets of images, we can calculate the Mahalanobis distance 
between their mean SLF vectors; using this distance measure avoids the 
problems with redundant or uninformative features discussed above in 
the context of feature reduction. To determine if this interest distance is 
statistically different from zero, we can use multivariate hypothesis tests 
such as the Hotelling T2 test (38). The difference between the two visually 
indistinguishable patterns giantin and gpp130 (33) can be detected suc-
cessfully in this way.

The possibility of objective similarity measurement is a critical require-
ment for the new field of location proteomics, the goal of which is to 
organize all proteins into a systematic framework based on their loca-
tion. The task of organization can also be stated as “Given a set of pro-
teins, each with multiple image representations, find a partitioning of the 
protein set such that images from members in the same partition show 
a single-location pattern” (10). We have demonstrated how this can be 
achieved by combing the SLF with clustering methods.

The starting point for clustering proteins by their subcellular location 
is, of course, a collection of images for many (or all) proteins expressed 
in a given cell type. Such a collection can be created by any of the 
methods discussed above for protein tagging. We have extensively ana-
lyzed one such collection, which consists of 3D images of CD-tagged cell 
lines, each expressing a different protein tagged with GFP (17). Single-
color GFP images were collected for live cells by spinning disk confocal 
microscopy (18). The 3D SLFs used for classifying the 3D HeLa images 
were calculated and SDA was applied to generate an optimal feature set 
for these data. This resulted in feature set SLF18 consisting of 34 features, 
including 9 morphological features, 1 edge feature, and 24 texture 
features.

Just as for comparison of images, the selection of a distance function 
is also important for clustering. We have evaluated two distance func-
tions, z-scored Euclidean distance, which is calculated after normalizing 
each feature to have zero mean and unit variance, and Mahalanobis 
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distance, which scales the contribution of each feature using the covari-
ance matrix.

For clustering the 3D 3T3 dataset, we evaluated a range of clustering 
methods using both of these distance functions (10). In this comparison, 
our premise was that a better distance function should produce better 
agreement among different clustering algorithms. The Cohen k statistic
can be used to measure the agreement between two partitions of data 
by comparing the observed agreement with the expected agreement (the 
larger the k statistic, the higher the agreement). Table 4 shows the k
statistic for comparisons between different clustering methods and dis-
tance functions. Four clustering algorithms were evaluated. The k-means/
Akaike information criteria (AIC) method uses k-means clustering for 
various numbers of clusters followed by calculation of the AIC to select 
number of clusters. The consensus method uses hierarchical clustering 
to group many random subsets of the input data and determine which 
groupings of proteins are stable for many random subsets. A third 
approach, termed ConfMat, begins by training a classifier for all clones, 
and then group clones that are hard to distinguish by examining the 
confusion matrix. The last method is based on visual inspection, and 
consists of assigning descriptive terms (e.g., “cytoplasmic”) to each clone, 
and then grouping proteins whose terms match completely. From the 
table, we can conclude that z-scored Euclidean distance is better than 
Mahalanobis distance, at least from the viewpoint of consistency among 
automated methods.

Figure 4 shows a consensus subcellular location tree based on the z-
scored Euclidean distance. The clustering result is consistent with visual 
inspection and available information from protein databases. For 
example, proteins showing a nuclear pattern and those showing a cyto-
plasmic pattern are well separated into different clusters. It is important 
to note that no human intervention is needed to create this tree, and 
that, unlike manually created groupings, the criteria used to construct it 
(the SLF, the distance function, and the clustering algorithm) are all 
well-described and can be easily updated or replaced as justified by 
evaluation of the results. In the limited cases where information on the 
subcellular location of these 90 proteins is available from protein data-

Table 4. Measurement of agreement between clustering results by 
various methods and using different distance functions.

Z-scored Euclidean Mahalanobis
Clustering approaches compared distance k distance k
k-means/AIC versus consensus 1 0.5397
k-means/AIC versus ConfMat 0.4171 0.3634
Consensus versus ConfMat 0.4171 0.1977
k-means/AIC versus visual 0.2055 0.1854
Consensus versus visual 0.2055 0.1156
The k statistic values are shown for comparisons between the four clustering methods: 
k-means/AIC (k-means by AIC optimization), consensus (consensus tree), ConfMat (con-
fusion matrix), visual (visual inspection). The k statistic is 1 when there is perfect agree-
ment between two methods and 0 when the agreement is not significant relevant to that 
expected at random. Note that the Euclidean distance shows a better agreement than the 
Mahalanobis distance.
Source: From Chen and Murphy, 2005 (10).
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bases, it generally agrees with the automated groupings. The obvious 
power of automated pattern clustering is that it can be used to cluster 
thousands of proteins automatically, a task that would challenge even 
the most dedicated visual curators.

5. Models of Subcellular Patterns

We have shown how location patterns can be described numerically and 
how they can be interpreted using both unsupervised and supervised 
learning approaches. The next step is to convert the knowledge we have 
obtained about protein patterns into a form that can be used for systems 
biology studies. This step is accomplished through pattern modeling.
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Figure 4. Example of a subcellular location tree. A consensus subcellular loca-
tion tree is shown for 87 3T3 cell clones expressing different CD-tagged proteins. 
Numerical features were calculated to describe each image and proteins 
were grouped into statistically distinguishable groups. An interactive browser 
(available at http://murphylab.web.cmu.edu/services/PSLID/tree.html) permits 
viewing of images for particular proteins in order of the degree to which they 
are representative of the overall pattern. Examples for two proteins within neigh-
boring, but distinct, clusters are shown. Reprinted with permission from Murphy, 
2005 (41).
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5.1. Object-based Modeling

Models are efficient ways to describe a system. The most practical models 
have a compact form characterized by a small number of parameters. We 
can distinguish between descriptive models, which utilize an irreversible 
mapping from image to features and cannot easily be used to synthesize 
new images, and generative models, which capture the essence of a 
pattern in a manner that can be used to generate new images that are, 
in principle, indistinguishable from the examples it was built from. A 
feature matrix is an example of a descriptive model because we cannot 
(usually) reconstruct patterns from it. Building a generative model may 
seem daunting given the large amount of data contained in one image. 
A typical 512 × 512 image with 256 gray levels could contain 250 kilo-
bytes. The task becomes even more challenging when considering the 
variation between images of the same pattern.

Fortunately, the sufficient representation of features implies that a 
pattern could be modeled in a much lower dimensional space. Because 
morphological features describing the properties of objects are powerful 
features, we considered the possibility that subcellular patterns could be 
adequately represented by considering them to be composed of distinct 
combinations of objects of particular types. Our starting point was to use 
some SLFs that had previously been calculated as averages for all objects 
to instead describe each individual object in a pattern. These subcellular 
object features (SOFs) were then used to determine how many statisti-
cally distinguishable object types were contained in an image collection 
using clustering. Once these types were found, a classifier was trained to 
recognize each type. This permits each cell pattern to be represented as 
a vector showing how many objects of each type it contains. This yields 
a two-stage process for modeling any cell image using objects. It consists 
of assigning a type to each object in the image and then applying a mul-
tinomial process to model the object distribution for a given pattern. This 
process has been applied on the 2D HeLa images to determine how 
accurately patterns can be recognized using only the objects they contain 
(36). For this purpose, the SLFs were replaced by a vector containing 
object frequencies, a vector containing the fraction of fluorescence in 
each object type, and/or a vector summarizing the SOF of each object 
type. The accuracy was 81%–82% for the 9 major patterns (giantin and 
gpp130 were merged into one class) using some or all of these features. 
This is encouraging because no spatial relation between objects was 
considered. With this fact, we can model the patterns in a hierarchical 
way. The first level is the composition of objects with different types, and 
the next level is the model of spatial relationship between the objects. 
The models will be complete at the level in which the objects themselves 
are described.

Such models facilitate further analysis. For example, we have for the 
first time developed a model to recognize mixture patterns (36). More 
importantly, the models will provide us with a higher level of under-
standing of subcellular locations because they could be related to bio-
logical entities easily. For example, the object type learning process will 
put all nuclei into one type and vesicles into another type. The object 
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models can further describe the details of location patterns and provide 
a high-resolution map for protein location. All of these will lead to gen-
erative models that can synthesize data of location patterns for systems 
biology study, such as cell behavior simulation.

5.2. Generative Models

In the previous section, we discussed building object-based models of 
location patterns. To develop them into generative models, the descrip-
tions of individual objects and their positions are required. Our prelimi-
nary work has shown the possibility of building such generative models 
for lysosome proteins (Zhao and Murphy, in preparation). We start by 
building generative models of nuclear and cell shape. The shape of 
objects containing a specific protein (e.g., LAMP2, a marker for lyso-
somes) is modeled by a 2D Gaussian distribution, which can then be 
easily used to synthesize new objects. The position of an object is 
described by the ratio of its distance to cell membrane and its distance 
to the nuclear membrane. Combining the object models with the models 
of nuclear and cell shape, we can synthesize a three-color image with 
three compartments (cytoplasm, nucleus, and vesicles) where the protein 
is localized. Figure 5 briefly shows the steps of the procedure. In this 
procedure, nuclear shape is synthesized before cell shape because the 
cell shape model is the description of the ratios between the distances 
of cell membrane to nuclear center and the distances of nuclear mem-
brane to nuclear center.

Generative models of subcellular location patterns will be important 
for bottom-up modeling in systems biology because they describe the 

Learn nuclear
shape model

Learn cell shape
model

Learn object
position model

Learn nuclear
texture model

Synthesize
nuclear texture

Synthesize image
by combining

cell, nucleus and
objects

Generate nuclear
shape

Generate cell
shape

Generate nucleus

Generate object
positions

Learn object
model

Generate object

Figure 5. Flowchart for learning object-based models for location patterns and 
synthesizing an image from the models. Statistical models of the nuclear shape, 
nuclear texture, cell shape, objects, and object positions are learned from real 
images. Nucleus, cell membrane and protein objects are then generated and 
combined based on the statistical models to synthesize an image.
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distributions of proteins in a cell with a high resolution. More interest-
ingly, they provide a friendly interface between location proteomics and 
systems biology by image synthesis. The synthesized images can be used 
as initial conditions of cell behavior simulation and they could be more 
reliable than manual settings because the models are learned from real 
data objectively.
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Summary

A major challenge in systems biology is the ability to model complex 
regulatory interactions. This chapter is concerned with the use of Linear-
Gaussian state-space models (SSMs), also known as linear dynamical 
systems (LDS) or Kalman filter models, to “reverse engineer” regulatory 
networks from high-throughput data sources, such as microarray gene 
expression profiling.

LDS models are a subclass of dynamic Bayesian networks used for 
modeling time series data and have been used extensively in many 
areas of control and signal processing. We describe results from simula-
tion studies based on synthetic mRNA data generated from a model 
that contains definite nonlinearities in the dynamics of the hidden factors 
(arising from the oligomerization of transcription factors). Receiver 
operating characteristic (ROC) analysis demonstrates an overall accu-
racy in transcriptional network reconstruction from the mRNA time 
series measurements alone of approximately a 68% area under the curve 
(AUC) for 12 time points, and better still for data sampled at a higher rate.

A key ingredient of these models is the inclusion of “hidden factors” 
that help to explain the correlation structure of the observed measure-
ments. These factors may correspond to unmeasured quantities that were 
not captured during the experiment and may represent underlying biolo-
gical processes. Results from the modeling of the synthetic data also indi-
cate that our method is capable of capturing the temporal nature of the 
data and of explaining it using these hidden processes, some of which may 
plausibly reflect dynamic aspects of the underlying biological reality.

217

Key Words: Transcriptional networks; microarrays; state-space models; 
variational Bayesian; reverse engineering.
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1. Introduction

A major challenge in systems biology is the ability to model complex reg-
ulatory interactions. Several computational approaches have been devel-
oped over recent years to address this challenge. So-called bottom-up 
approaches begin with a detailed mathematical description of the bio-
physical processes involved in the regulatory pathway (transcription 
factor binding, diffusion, mRNA and protein degradation, etc.), usually 
expressed as differential equations (see Kholodenko et al. (1), for 
example). To date, these approaches have been applied mainly to small, 
well-defined biological model systems. In contrast, so-called top-down 
approaches attempt to “reverse engineer” regulatory networks from high-
throughput data sources, such as microarray gene expression profiling.
Many of the tools that have been applied in an exploratory way to the 
problem of reverse engineering genetic regulatory networks from gene 
expression data have been reviewed by Wessels et al. (2), van Someren 
et al. (3), de Jong (4), and Friedman (5). These include Boolean networks 
(6,7,8), time-lagged cross-correlation functions (9), and linear and non-
linear autoregression models (10,11,12). Although these techniques have 
produced models that appear biologically plausible, based on circumstan-
tial evidence from the biological literature, many have been derived from 
public domain data with insufficient replication, given that these papers 
attempt to reconstruct the interactions of large numbers (sometimes 
thousands) of genes from small data sets, with the consequent likelihood 
of model overfitting. Because there exists very little gene expression data 
for which the ground truth regulatory network is known, many authors 
have turned to in silico simulations to test the performance of reverse-
engineering methods on data produced from a biologically plausible 
model system. Care needs to be taken in interpreting the results of such 
simulations, particularly if the artificially generated data comes from a 
model that has the assumed model structure of the identification scheme, 
as the actual structure of the networks generating real data are presum-
ably unknown. In particular, Smith et al. (13), Yeung et al. (14), and Zak 
et al. (15,16) have attempted to evaluate reverse engineering techniques 
by the use of simulated gene expression data from in silico networks. Zak 
et al. (15,16) considered linear, log-linear, and nonlinear (squashing func-
tion) regressive models and concluded that these methods were unable to 
identify the generating network from simulated gene expression data 
alone and constituted little more than curve fitting.

Murphy and Mian (17) were the first to propose the use of a general 
class of graphical models known as dynamic Bayesian networks (DBNs) 
to model time series gene expression data. Bayesian networks have a 
number of features that make them attractive candidates for modeling 
gene expression data, such as their ability to handle noisy or missing data, 
to handle hidden variables, such as protein levels, which may have an 
effect on mRNA steady-state levels, to describe locally interacting pro-
cesses and the possibility of making causal inferences from the derived 
models. The application of Bayesian networks to microarray data analysis 
was first explored experimentally in the pioneering work of Friedman et 
al. (18). However, this approach ignored the temporal dependence of the 
gene intensities during trials and went only as far as to infer the causal 
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relationships between the genes within one time step. Their method dis-
cretized expression levels and made use of efficient candidate proposals 
and methods for searching the space of model structures. This approach 
also assumed that all the possibly interacting variables are observed on 
the microarray, which precludes the existence of hidden causes or unmea-
sured genes whose involvement might dramatically simplify the network 
structure, and therefore ease interpretability of the mechanisms in the 
underlying biological process. Although microarray technologies have 
made it possible to measure time series of the expression level of many 
genes simultaneously, we cannot hope to measure all possible factors 
contributing to genetic regulatory interactions, and the ability of Bayes-
ian networks to handle such hidden variables would appear to be one of 
their main advantages as a modeling tool. Husmeier (19) has evaluated 
the accuracy of gene regulatory network reconstruction from simulated 
discretized gene expression data using fully observed Bayesian network 
models and concluded that, at least to a certain extent, local regulatory 
network structures could be recovered. The fidelity of network recon-
struction was found to depend on the prior probabilities used in the 
Bayesian inference scheme. Following Friedman et al., a number of other 
authors have described Bayesian network models of gene expression 
data. Most published work to date has only considered either static 
Bayesian networks with fully observed data (20) or static Bayesian net-
works that model discretized data but incorporate some hidden variables 
(21,22,23,24). Ong et al. (25) have described a dynamic Bayesian network 
model for E. coli which explicitly includes operons as hidden variables, 
but again uses discretized gene expression measurements. There is, there-
fore, a clear need for a dynamic modeling approach that can both accom-
modate gene expression measurements as continuous, rather than discrete, 
variables and which can model unknown factors and unobserved regula-
tors as hidden variables. This chapter describes one such method. Our 
focus on modeling unobserved and unknown factors is crucial, as mea-
surements of steady-state mRNA levels are the result of a variety of 
complex events, including gene transcription and mRNA degradation.

This chapter is concerned with Linear-Gaussian state-space models 
(SSMs), which are also known as linear dynamical systems (LDS) (26) 
or Kalman filter models (27). These models are a subclass of dynamic 
Bayesian networks used for modeling time series data and have been 
used extensively in many areas of control and signal processing. We will 
use the terms LDS and SSM interchangeably throughout this chapter, 
although they emphasize different properties of the model. Linear 
dynamic system emphasizes that the dynamics are linear; such models 
can be represented either in state-space form or in input–output form. 
State-space model emphasizes that the model is represented as a latent-
variable model (i.e., the observables are generated via some hidden 
states). State-space models can be nonlinear in general; here, it should 
be assumed that we refer to linear models with Gaussian noise unless 
otherwise stated. State-space models have a number of features that 
make them attractive for modeling gene expression time-series data. 
They assume the existence of a set of hidden state variables, from which 
noisy continuous measurements can be made, and which evolve with 
Markovian dynamics. In our application, the noisy measurements are the 
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observed gene expression levels at each time point, and a key innovation 
of our method is that we assume that the hidden variables are modeling 
effects that cannot be measured in a gene expression–profiling experi-
ment. The effects of genes that have not been included on the microar-
ray, levels of regulatory proteins, the effects of mRNA, and protein 
degradation are examples of such hidden variables.

We have previously described the application of linear state-space 
modeling to reverse engineer transcriptional networks from highly rep-
licated expression profiling data obtained from a well-established model 
of T-cell activation in which we monitored a set of relevant genes across 
a time series (28,29,30,31). Nachman et al. (32) recently described a 
related dynamic Bayesian network model that includes hidden states to 
model unobserved regulator activity levels. Perrin et al. (33) and Wu 
et al. (34) also described related SSMs for modeling genetic regulatory 
networks. However, the methods used in these papers to estimate the 
number of hidden states in these models suffer from several technical 
drawbacks, not least in that they cannot provide us with posterior distri-
butions over all the parameters of the model, which are needed to quan-
tify our uncertainty. Furthermore, neither the model described by Perrin 
et al. (33) nor the one described by Wu et al. (34) utilizes inputs to feed 
back the outputs from the previous time step. Consequently, these models 
do not allow genes to affect the hidden states and do not allow genes to 
affect other genes directly. The model described in this chapter does not 
suffer from these limitations and we have discussed the advantages of 
our approach in our published work (31).

Some aspects of using the LDS model for this type of problem are not 
ideal. For example, we make the assumptions that the dynamics and 
output processes are time invariant, which is unlikely in a real biological 
system. Furthermore, the times at which the data are taken are not 
linearly spaced, which might imply that there is some nonlinearity in the 
rate of the transcriptional process; there may be whole missing time slices 
that, if they had been included, would have made the dynamics process 
closer to stationary. There is also the limitation that the noise in the dynam-
ics and output processes may not be Gaussian. Nevertheless, despite the 
assumptions inherent in linear state-space models, the results described in 
our published work (28,29,30,31) indicate that they are a very useful tool 
for investigating gene transcriptional networks. The resulting network 
models provide excellent examples of the type of testable biological 
hypotheses that can be generated using reverse engineering approaches. 
Our models reflect many of the dynamics of an activated T-cell. In particu-
lar, they reveal the integrated activation of cytokines, proliferation, and 
adhesion following activation and place JunB and JunD at the center of 
the mechanisms that control apoptosis and proliferation.

2. Modeling Time Series with SSMs

2.1. Variables and Topology

In SSMs, a sequence (y1,  .  .  .  , yT) of p-dimensional real-valued observa-
tion vectors, denoted y1:T, is modeled by assuming that at each time 
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step t, yt was generated from a k-dimensional real-valued hidden-state 
variable xt, and that the sequence of x’s follow a first-order Markov 
process. The joint probability of a sequence of states and observations is 
therefore given by:

p p p p pT T t t
t

T

t tx y x y x x x y x1 1 1 1 1 1
2

: :, .( ) = ( ) ( ) ( ) ( )−
=

∏ (1)

The distribution p(x1) over the first hidden state is assumed Gaussian. 
Our approach has focused on models where both the dynamics, p(xt|xt−1),
and output functions, p(yt|xt), are linear and time-invariant, and the dis-
tributions of the state evolution and observation noise variables are 
Gaussian, i.e., linear-Gaussian SSMs:

xt = Axt−1 + wt,    wt ∼ Gaussian(0, Q) (2)

yt = Cxt + vt vt ∼ Gaussian(0, R) (3)

where A is the (k × k) state dynamics matrix, C is the (p × k) observation 
matrix, and Q (k × k) and R (p × p) are the covariance matrices for the 
state and output noise variables wt and vt. The parameters A and C are
analogous to the transition and emission matrices, that are respectively 
found in the discrete analogue model, the hidden Markov model (26).

A straightforward and powerful extension of this model is to allow the 
dynamics and observation models to include a dependence on a series 
of d-dimensional driving inputs u1:T:

xt = Axt−1 + But + wt (4)

yt = Cxt + Dut + vt. (5)

Here, B (k × d) and D (p × d) are the input-to-state and input-to-
observation matrices, respectively. If these driving inputs u1:T are aug-
mented with a constant bias, then this model is able to incorporate an 
arbitrary origin displacement for the hidden state dynamics, and can also 
induce an arbitrary displacement in the observation space. These dis-
placements can be learned as parameters of the input-to-state (B) and 
input-to-observation (C) matrices. An input-dependent SSM can be used 
to model control systems, but another possible way to utilize the input’s 
construction is to feed back the data from previous time steps in the 
sequence into the inputs for the current time step. This means that 
the hidden state can concentrate on modeling hidden factors, while the 
Markovian dependencies between successive outputsare modeled directly 
using the output–input feedback construction. We adapt this model for 
the analysis of gene expression time-series data in Section 2.2.

Without loss of generality we set the hidden state evolution noise 
covariance, Q, to the identity matrix; this is possible because an arbitrary 
noise covariance can be incorporated into the state dynamics matrix, A,
and the hidden state rescaled and rotated to be made commensurate 
with this change.

The remaining parameter of a linear-Gaussian SSM is the covariance 
matrix, R, of the Gaussian output noise vt. This noise is p-dimensional,
and, as applied to the gene expression model, corresponds to the noise 
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variance in the expression level of each of the p genes. We assume R to
be diagonal and can learn the scale of these diagonal terms. For nota-
tional convenience, we collect the above parameters into a single param-
eter vector for the model q = (A, B, C, D, R).

2.2. A SSM for Gene Expression Time Series

In this chapter, we use the input-dependent SSM, and we feed back the
gene expression levels from the previous time step into the input for the 
current time step. In doing this, we attempt to discover gene–gene inter-
actions across time steps, with the hidden state in this model now really 
representing unobserved variables, such as levels of regulatory proteins 
or unspotted genes.

A graphical model for this setup is given in Figure 1. When the input 
is replaced with the previous time step’s observed data, ut = yt−1, the 
equations for the SSM can be rewritten from equations (4) and (5) into 
the form:

xt = Axt−1 + Byt−1 + wt (6)

yt = Cxt + Dyt−1 + vt. (7)

Here, yt denotes the gene expression levels at time step t and xt, the 
unobserved hidden factors in the state space. In practice, y is the suitably 
normalized and transformed values of the gene expression levels. Table 
1 summarizes the roles of the various parameter matrices.

As a function only of the data at the previous time step, yt−1, the data 
at time t can be written as follows:

yt = (CB + D)yt−1 + rt, (8)

where rt = vt + Cwt + CAxt−1 includes all contributions from noise and 
previous states. Thus, the direct interaction between gene j and gene i

x1

u1

y1 y2 y3 yT

x2 xTx3

...

...

B

B

D

D

C

A

Figure 1. Feedback graphical model with outputs feeding into inputs. Gene expres-
sion levels at time t are represented by yt, while the hidden factors are represented 
by xt. Reprinted from Beal et al., (31) by permission of Oxford University Press.
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can be characterized by the matrix element [CB + D]ij. Indeed, this 
matrix need not be symmetric, and the element represents positive or 
negative regulation from gene j to gene i at the next time step, depending 
on its sign. This is the matrix we will concentrate our analysis on because 
it captures all of the information related to gene–gene interaction over 
one time step. We have also shown that, if the gene expression model is 
stable, controllable, and observable, then the [CB + D] matrix remains 
invariant to any coordinate transformations of the state and is, therefore, 
identifiable (30). The identifiability property is important, for without it, 
it would be possible for different values of the SSM parameters (and 
hence, different values of [CB + D]) to give rise to identically distributed 
observables, making the statistical problem of estimation ill-posed.

2.3. State Estimation in the SSM

Given a SSM with parameters q = (A, B, C, D, R) and a sequence (y1,  .  .  .  , 
yT) of observation vectors (the gene expression levels), one may be 
interested in estimating the hidden state xt of the dynamical system. In 
particular, the hidden state may correspond to known biological pro-
cesses that might be interesting to estimate from noisy data. There are 
three scenarios for solving this state estimation problem: filtering,
smooothing, and prediction. The filtering task attempts to infer the likely 
values of the hidden variables xt that generated the current observation, 
given a sequence of observations up to and including the current obser-
vation y1  .  .  .  yt. For linear Gaussian models, this problem was solved by 
the now classic Kalman filter (35). Because all variables are Gaussian 
and all relationships are linear (which preserves Gaussianity), p(xt|y1,  .  .  .  , 
yt) is also Gaussian. The Kalman filter, by recursively computing the 
mean and covariance matrix of p(xt|y1,  .  .  .  , yt), given the analogous quan-
tities at time t − 1, therefore, fully represents the distribution of the 
hidden state variable.

The smoothing task infers the likely values of the hidden variables at 
some point in the past xt−t, for t > 0, given a sequence of observations up 
to and including the current observation y1  .  .  .  yt. An extension of the 
Kalman filer—the Rauch-Tung-Striebel smoother—achieves this recur-
sively for linear Gaussian models (36), again, by computing the mean 
and covariance matrix of xt−t.

Finally, the prediction task tries to simulate the unobserved dynamics 
one or many steps into the future to predict future hidden states or 
observations. Thus, the quantities of interest are p(xt+t|y1  . .  .  , yt) and 

Table 1. Summary of the roles of the various parameter matrices of the SSM 
with feedback inputs. 
param. models influence of  .  .  . on  .  .  . and parameter’s role is to capture

[A]ij state j at time t - 1 state i at time t the state dynamics
[C]ij state j at time t gene i at time t effect of the states on gene levels
[B]ij gene j at time t - 1 state i at time t effect of gene levels on state
[D]ij gene j at time t - 1 gene i at time t causal gene-gene interactions
Here, “state” is used to refer to a particular hidden state dimension.
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p(yt+t|y1  . .  .  , yt). Simalar recursive algorithms give the means and covari-
ance matrices of these distributions.

The discussion in this section assumes that the parameters of the 
model are known. For the problems of interest to us in this chapter, the 
only quantity that is given is the sequence of observed gene expression 
levels. Therefore, we now turn to the problem of learning the parameters 
of the model from such data. One should keep in mind, however, that to 
learn the model parameters it is often necessary to solve the state-
estimation problems outlined in this section, as a subroutine.

2.4. Parameter Learning In the SSM and Bayesian Learning

A conventional objective function when learning SSMs is the likelihood 
function, which is the probability of the observed data y1:T given the 
parameters q, written p(y1:T|q). The parameters of an SSM can be learned 
using maximum likelihood (ML) methods that involve expectation-
maximization (EM) to integrate from the hidden state sequence x1:T

(37). However, in general, the ML approach is prone to overfitting, espe-
cially when fitting models with many variables with relatively small 
amounts of data because a more complex model can always fit the data 
better than a simpler one. A principled way to avoid this overfitting is to 
place a prior p(q) on the parameters of the model that captures our 
biological intuition for sparse network models (often referred to as 
parameter regularization) and find the maximum a posteriori (MAP)
parameters by using Bayes’ rule. However, as has been well documented 
in the literature, both ML and MAP learning methods still suffer from 
overfitting on small datasets, and MAP learning suffers from inconsisten-
cies, such as a dependence on the choice of parameterization (38,39). We 
have instead turned to a fully Bayesian analysis, which avoids overfitting
and provides error bars on all model parameters—in this paradigm, the 
objective function is simply the probability of the data p(y), which results 
from integrating the parameters of the model in respect to their prior 
distribution:

p d p pT Ty y1 1: : .( ) = ( ) ( )∫ q q q (9)

Optimizing a model in respect to such an objective function avoids 
overfitting in the conventional sense. In practice, a Bayesian learning 
scheme infers distributions over all the parameters and makes modeling 
predictions by taking into account all possible parameter settings. In 
doing so, we penalize models with too many parameters, embodying an 
automatic Occam’s Razor effect.

2.5. Prior Specification for the SSM

This section describes the parameter priors for the SSM, which are 
important to discuss for three reasons. The first is that no meaningful 
inferences about the parameters of the model can be made in the absence 
of some subjective prior specification; the second reason is that the 
success of the fully Bayesian scheme depends on an advanced prior 
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specification framework known as automatic relevance determination
(ARD) (38), which we describe briefly in the next paragraph; the third 
reason is that these priors can serve the important role of articulating 
expert knowledge about the biological system in question, and so are key 
to building realistic and powerful mathematical models of the biological 
processes we wish to study.

In general, the priors on all model parameters are parameterized by 
hyperparameters (see Figure 2), which can be optimized so as to adapt 
to the scale of the data and so as to automatically select relevant and 
irrelevant variables in the model, i.e., ARD. There are two ways to under-
stand the ARD process. The first is to consider it simply as penalizing or 
regularizing parameters that are not useful in modeling the observed 
data. The second way to understand the ARD process is to consider it 
as a minimum description length principle or the embodiment of an 
Occam’s Razor effect. If we are able to model the data just as well 
without some of the parameters, then it wastes bits to encode these 
parameters under the model prior (the ARD prior). During an optimiza-
tion, the ARD process will endeavor to reduce the description length of 
the data (the negative log marginal likelihood), and altering the hyper-
parameters of the prior will dictate that certain groups of parameters 
tend to values that are ineffectual (this may be zero or a different operat-
ing point). This can be understood by realizing that if a parameter setting 
is excluded by the prior, then the posterior distribution of that parameter, 
having learned from data, still cannot include that setting. The parameter 
has effectively been “turned off.”
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Figure 2. Graphical model representation of a Bayesian SSM. Each sequence 
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hidden variables, each presenting the cross-time dynamics and output process. 
The second (outer) plate is over the data set of size n sequences. Here, (a, b, g,
d, a, b, S, m) represent the hyperparameters of the model.
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As an example of this framework, consider the collection of parame-
ters in the C matrix (the state-to-output or factor-loading matrix), which 
is given a separate prior on each of its k columns. Letting c(j) denote the 
column vector consisting of the p entries in the jth column of the C
matrix, the ARD prior on c(j) is a product of one-dimensional Gaussians, 
each having mean zero and a precision (inverse-variance) hyperparam-
eter bj:

C pk j jq j
q

p

= ( ) ( ) = ( )( ) ( ) ( )
=

∏c c c c1
1

0. . . , ; , .Gaussian β (10)

Part of our SSM learning algorithm is to optimize the hyperparameters 
{b1, b2, . .  .  , bk}. Often, we find that for some select j’s the values of bj tend
to infinity. What does this correspond to? This implies that the prior for 
the jth column is now Gaussian with zero mean and infinite precision (or 
zero variance), which means that the only setting of the parameters c(j)

that would have nonzero probability under p(c(j)) would be the 0 vector.
In the case of the C matrix, having the jth column all zeros is very inter-
esting: looking at equation (3) this means that the jth hidden dimension 
is irrelevant to generating any of the p dimensions of the output y. The 
jth hidden dimension has been pruned from the model.

2.6. Determination of State-Space Dimensionality

A first-order Markov chain between observed gene expression levels 
will likely not capture some of the longer time correlations, and this will 
be exacerbated if the sampling intervals are long. However, the inclusion 
of a hidden state in our models allows, in theory, dependencies between 
the observed gene expression values that are potentially higher than 
first-order Markov.

An analogy is the use of hidden Markov models (which have an identi-
cal graphical model to that shown in Figure 1) for speech recognition. 
There are obviously high-order correlations between the audio wave-
forms of speech across multiple time points, but to a good approximation, 
these can be successfully modeled by a first-order Markov chain in the 
hidden states, each of which correspond to a different phoneme. The 
more phonemes a language has, the more potential there is for longer-
range temporal correlations in the observed speech signals. This leads us 
to the question of how complex these dependencies should be, which is 
directly related to the question of what the required dimensionality of 
the hidden state should be.

The task of deciding upon a suitable dimension for the hidden state-
space remains a difficult problem. If too few dimensions are used, then 
it can be impossible to fully capture hidden dynamics, and, as a result, 
the model is forced to infer direct gene–gene interactions that are in fact 
indirect and mediated by an unobserved mechanism (thus, the inferred 
interaction graph is no longer sparse). If too many dimensions are used, 
the model will overfit to the noise in the gene expression levels and 
produce erroneous inferences. In our earlier work (28,29,30), this dimen-
sionality was determined by a cross-validation experiment in which we 
incremented the number of hidden states and monitored the predictive 
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likelihood using a portion of the data set that had not been used to train 
the model. However, the holdout set error in a cross-validation experi-
ment is a noisy quantity, and for a reliable measure a very large holdout 
data set is needed; ideally, we would prefer to utilize all the data for 
model learning, rather than holding out a portion of it. A variational 
Bayesian (VB) treatment of these models provides a novel and efficient
way of using all the data to learn their structure, i.e., to identify 
the optimal dimensionality of their state-space. The VB algorithm pro-
vides distributions over the model parameters and, as has been shown 
in a series of experiments on synthetic data, can be used successfully to 
determine the structure of the true generating model, including inferring 
the dimensionality of the hidden state-space (39).

3. Results

3.1. Results from Experimental Data Using the Variational 
Bayesian Model

In this section, we describe how the ARD process described can be 
applied to gene expression measurements (as outputs of the model), as 
well as hidden dimensions, just by applying the same sort of flexible
Gaussian prior to other parameters of the SSM. By pruning away 
unneeded interactions using ARD and the Bayesian Occam’s Razor 
effect, we obtain sparsely connected gene regulatory networks that do 
not overfit the data.

In Beal et al. (31), we examined the gene–gene influences represented 
by elements of the matrix [CB + D]. The VB model provides us with 
posterior distributions for the parameters C, B, and D. Using the poste-
rior distributions for these parameters, we compute the distribution of 
each of the elements in the combined matrix [CB + D]. We consider an 
element of this matrix as providing evidence for a candidate gene–gene 
interaction if the element’s posterior distribution is positioned signifi -
cantly far from the zero point of no influence. Significance in this scenario 
corresponds to the zero point being more than n standard deviations 
from the posterior mean for that entry. Because these distributions are 
Gaussian (39), and may lie above or below the zero point (corresponding 
to positive or negative regulation), we can use the standard Z-statistic
for normally distributed variables to threshold the connectivity matrix 
at any desired level of statistical significance. We can consider this as a 
simple decision problem with two hypotheses:

 H0 : [CB + D]i,   j = 0 (no connection)

        vs

 H1 : [CB + D]i,   j ≠ 0 (connection),

where H0 is rejected when 0 is not within the confidence interval. Thresh-
olding the [CB + D] matrix using this criterion produces a connectivity 
matrix or directed graph where the diagonal elements represent self–self 
interactions at consecutive time steps.

Figure 3 (A and B) shows results from a number of state-space models 
trained using our VB training algorithm, starting from 10 different 
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Figure 3. The effect of changing the state-space dimensionality k on (A) the 
lower bound to the marginal likelihood, and (B) the number of significant gene–
gene interactions recovered in the CB + D matrix. (A) Variation of the lower 
bound on the marginal likelihood, F, with dimensionality of hidden state-space, 
k, for 10 random initializations of model training. The line represents the median 
value of F. (B) The number of significant interactions that are repeated in all 10 
runs of model training at each value of k. There are 3 plots, each corresponding 
to a different significance level. Reprinted from Beal et al., (31) by permission 
of Oxford University Press.
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random initializations and with k = 1,  .  .  .  , 20 hidden state dimensions. As 
a byproduct of the VB approach, we can obtain a lower bound on the 
marginal likelihood, or Bayesian “evidence,” which allows us to select 
an appropriate model containing the optimum number of hidden state 
dimensions. Figure 3A shows the variation of the median value of the 
lower bound on the marginal likelihood, which we call F, with hidden 
state dimension k (also plotted are the individual F values from each of 
the 10 random seeds). The median F value peaks around k = 14, indicat-
ing the optimal dimensionality of the hidden state-space for this data set. 
Figure 3B shows the number of significant gene–gene interactions that 
are consistently repeated in all 10 runs at each value of k; there are three 
plots, corresponding to three significance levels (chosen to correspond 
to those used in our previous study [29]). Regardless of the significance
level we choose, we can see that the number of significant interactions 
has leveled off by approximately k = 14, which corresponds to the peak 
in F graph. Importantly, some interactions appear robustly even in 
models that incorporate many hidden state dimensions. Note that models 
with no hidden states, i.e., k = 0, equivalent to the linear models of 
D’Haeseleer et al. (10) and Holter et al. (40), give a much higher esti-
mate of the number of direct interactions, which may result in a very 
misleading impression of the underlying genetic regulatory networks.

3.2. Results from Synthetic Simulated Data

To evaluate our method to reverse engineer genetic regulatory networks 
using data collected from gene expression microarray experiments, we 
simulated a microarray experiment in silico, generating a synthetic data 
set using our gene expression model. Synthetic data was generated from 
an initial network defined by the connectivity matrix in the matrix [CB
+ D]. In previous work (30), we have demonstrated that we are able to 
recover the same network using the SSM model and bootstrap procedure 
described earlier and also estimated the size of the data set needed by 
the method to reconstruct the underlying network. However, care must 
be taken in extrapolating these simulation results to experiments with 
actual gene expression data. Although the simulations were idealized in 
that the data were actually generated from a linear dynamic system, in 
real gene expression data one would expect to see nonlinearities, more 
or less noise, various time scales and delays, and possibly many hidden 
variables.

3.3. Results from Realistic Simulated Data

Ideally, we would like to test the performance of our reverse-engineering 
method on data produced from a biologically plausible model system. 
Because there exists very little gene expression data for which the ground 
truth regulatory network is known, we have followed a recent approach 
described by Zak et al. (16), who designed a highly detailed and biologi-
cally plausible in silico network upon which a formal identifiability analy-
sis can be based. The network is shown in Figure 4, and consists of 10 
genes with expression levels derived from realistic interactions between 
10 transcription factor proteins (most of which form homodimers), a 
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ligand input, and 13 bound promoters. This network was constructed by 
arranging modules of transcriptional regulation into regulatory motifs 
drawn from the biological literature, such as a cascade (41), mutual 
repression (41,42,43), autoactivation, and sequestration (44) and agonist-
induced receptor down-regulation (45,46). Model parameters were 
selected to yield time scales representative of mammalian gene expres-
sion (16). In silico simulations were carried out using MATLAB code 
provided by Daniel Zak, integrating the deterministic ordinary differen-
tial equations (ODEs), which describe the model based on a spiked 
ligand input at time 10 h. From these, we constructed time courses of 
length 58 h and generated incremental sets of replicates of sizes {1, 2, 4, 
8, 16, 32} by adding Gaussian noise at each time point to the log-ratio of 
each of the 10 observed gene expression values. Note that although there 
are 54 players in this network, we only provide our SSMs with the 
log-ratios of the mRNA levels. We tested our VBSSMs on the task of 
reverse-engineering the interactions between the genes, even though
there are 44 hidden quantities (the previously listed biological players) 
that our method did not have access to, but were nevertheless required 
for the ODE simulations.

To investigate the effect of different sampling rates in time, we con-
structed two complementary data sets from these replicates: the first
sampled across 12 equally spaced time points, the second over 120 points. 
We also investigated the performance of the VBSSM with ARD hyper-
parameter optimization either enabled or disabled. Note that with ARD 
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Figure 4. Realistic model gene regulatory network from Zak et al. (16). Wavy 
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Oxford University Press.
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hyperparameter optimization enabled, the SSM has a prior that strives 
for sparse networks; hence, this may drive down the positive arc rate. 
Figure 5 shows the plots of F against the dimensionality of the hidden 
state, k, for varying model conditions (see caption for details). We note 
the following trends. For small numbers of replicates ( just 1 or 2), the 
curve of F contains a maximum at k = 1 (or less), implying that there is 
not sufficient information in the data to warrant the creation of even a 
single hidden-state dimension; conversely, in the case of 32 replicates, 
there is a distinct peak in the curve of F, implying that there is an optimal 
nonzero state-space dimensionality. Concentrating on 32 replicates, we 
see that with just T = 12 sampled time points, F peaks at k = 2 and k =
4 dimensions, for hyperparameter optimization off and on, respectively. 
However, we also see that for T = 120 measured time points there is 
much more information available and the model supports a larger 
number of dimensions; with hyperparameter optimization off it supports 
k = 5, and, intriguingly, with hyperparameter optimization turned on it 
seems as if infinitely large k is supported (this is because the ARD 
mechanism self-prunes if necessary so that the model with k = ∞ is just 
using of the order k = 5 dimensions).

Changing the number of replicates certainly affects the optimal setting 
of the dimensionality of the state-space, as measured in terms of 
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Figure 5. Computations for the values of F, per replicate, for many different 
VBSSM models. Each row denotes a different combination of number of time 
samples taken and whether hyperparameter optimization was enabled or not (as 
shown on y-axis labels). Each column corresponds to a different data set supplied 
to the model in terms of the numbers of replicates provided.
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the highest F value. However, we would also like to demonstrate that 
changing the hidden state-space dimensionality does, in fact, have an 
impact on the model’s ability to infer the presence or absence of interac-
tion arcs in the regulatory network. To this end, we have performed a 
ROC analysis or sensitivity/specificity trade-off, using the known gene 
regulatory network specified by the model of Zak et al. (16). ROC curves 
are obtained by computing the hit and false alarm rates for different 
thresholds (i.e., the confidence level placed on testing individual connec-
tions). The hit rate, or Sensitivity, is defined as the proportion of recov-
ered true connections, and the Specificity is defined as the proportion of 
correctly identified nonconnections. The false alarm rate, or Complemen-
tary Specificity, represents one minus the fraction of nonconnections that 
are correctly identified, as defined below:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Complementary Specificity = 1 − Specificity,

where:

TP = number of actual connections that are declared connections
FP = number of nonconnections that are declared connected
FN = number of actual connections that are declared not connected
TN = number of nonconnections that are declared not connected.

Perfectly recovering the network corresponds to a sensitivity of 1 and 
a complementary specificity of 0. Our definition of a true-positive (tp) is, 
in fact, more rigorous than in earlier similar studies (19) because, if an 
interaction is present in the true network, we require it to be recovered 
with the correct direction of influence. In the ROC plots, points in each 
curve represent the rate values computed based on different thresholds 
(nominal confidence levels). For each value of k, a trace is plotted con-
sisting of a total of 21 points, each of which corresponds to a confidence
level for a Z-statistic from the set {0, .5, 1, 1.5,  .  .  .  , 10}. On the ROC 
curve, the vertical “hit” axis represents the fraction of the total actual 
connections in the network that are correctly identified. The horizontal 
“false alarm” axis represents one minus the fraction of nonconnections 
that are correctly identified.

Figure 6 shows the results of our ROC analyses for the data set con-
sisting of 4 replicates, comparing the use of data subsampled at T = 12
(left) or T = 120 (right) time points for hyperparameter optimization 
turned off. Each ROC curve is obtained by varying the threshold for the 
statistical significance of a connection in the network, from infinitely
large (top right: no connections considered significant) to very small 
(bottom left: almost all connections considered significant), and, as such, 
this analysis does not require the specification of any particular signifi -
cance threshold (e.g., 95.0%, 99.0%, etc.). By comparing subplots in 
Figure 6, we see that having more time points sampled leads to both 
higher sensitivity and higher specificity (we move toward the top left of 
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Figure 6. ROC analyses (sensitivity vs. complementary specificity) for (A) T =
12 and (B) T = 120 sampled time points, for values of the hidden state-space 
dimensionality, k, ranging from 1, 2,  .  .  .  , 16, trained on the data set of size 4 
replicates.
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points, for the ROC plots shown in Figure 6.
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the ROC plot). Moreover, as is seen more clearly in the case of T = 120
(right), we improve recovery of the network as we increase the hidden 
state-space dimension from k = 1 to k = 16. These observations can be 
quantitatively substantiated by examining the AUC as k is varied for the 
two scenarios of T, as shown in Figure 7. In particular, we note that for 
T = 120 the AUC increases by at least 7–8% on increasing the value of 
k. Note the AUC is the average probability that a particular connection 
would be correctly inferred as present or not present, with the average 
taken assuming that any given connection is equally likely to be present 
or not present.1 Finally, we plot the average performance for T = 12 and 
T = 120 for different numbers of replicates, as shown in Figure 8. By 
noting that the high-k AUC is approximately 68% for both of the sce-
narios (T = 12, 16 replicates) and (T = 120, 4 replicates), we can conclude 
that, at least for this data set and method of generating replicates, a 10-
fold increase in temporal sampling allows us to reduce the number of 
experimental replicates by a factor of 4. We also note that for T = 120
and 16 replicates, we can achieve 72% AUC performance.
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Figure 8. Shows the AUC for (left) T = 12 and (right) T = 120 as the number of 
replicates is artificially increased (by adding Gaussian noise to the simulated 
mRNA levels). Each point on each trace is the AUC according to a VBSSM 
model for a particular value of k trained on the number of replicates indicated 
in the legend.

1 This assumption of equally likely present and not-present interactions evidently 
does not hold in real-world gene regulatory networks, which we know to be sparse, 
having many fewer positives than negatives. As a result, the AUC is an under-
estimate of performance, because all our models have operating points favoring 
high specificity at the expense of sensitivity, i.e., TN favored over TP rates.
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3.4. Correlations of Hidden States with Unobserved Quantities

An advantage of the time series model that we have proposed is that it 
explicitly provides a hidden state-space, which has a dynamics that may 
help capture some nontrivial temporal processes, and in so doing explain 
the dependencies between the gene expression levels. In particular, using 
a hidden state allows us to capture non-Markov dependencies between 
the observed data (mRNA levels), and we may also find that some of 
the hidden state dimensions correspond to relevant biological processes 
that are key to the regulatory mechanisms. In the case of this synthetic 
data set that we have been analyzing, there are players other than the 
mRNA levels that take part in the regulatory network, such as transcrip-
tion factors, promoters, etc. It is interesting to analyze the distribution 
of the inferred hidden state trajectories within our learned models to see 
if they match, or closely correlate with, some of these other players 
whose time course profiles are never provided to the VBSSM model. In 
Figure 9, we show the time courses of the observed mRNA levels and 
the protein and ligand concentrations, which are not provided to the 
SSM.

In the case of T = 120 and no hyperparameter optimization, we mea-
sured the correlation through time between each of the 54 dimensions 
of the synthetic data and each of the k inferred hidden states of the SSM. 
The analysis was simplified by examining only the means of the state-
space trajectories, which correspond to the most likely hidden state 
sequence explanation. For each hidden state that had not been pruned 
by the ARD prior (note that this may and often does occur even with 
ARD hyperparameter optimization disabled), we obtained the most 
correlated time course profiles out of the 54 profiles in the complete 
data set.

We do not find that any of the unpruned hidden state sequences in 
these models are unambiguously directly correlated with the individual 
unobserved time series profiles. This may be partly explained by the fact 
that many of the unobserved players have profiles that almost exactly 
mimic one or more of the observed mRNA levels, and thus, it would be 
redundant for the hidden state trajectories to resemble any such player 
in the model. Instead, we find several smoothly varying hidden state 
trajectories, and for no model there are more than two such trajectories. 
Figure 10 depicts a selection of these trajectories. For example, we show 
that for the models with k = 7 and 9, there is one hidden state taking on 
rather similar forms over time (this is also seen in models of other sizes). 
However, for the model of size k = 12 there are two hidden states, which 
quite correctly, are different (these happen to be hidden dimensions 5 
and 12). Likewise for k = 15 there are two quite different remaining 
hidden state trajectories (hidden dimensions 5 and 8). We can also 
examine the effect that each of these hidden states is having on the 
mRNA levels at the current time point by examining the C matrix,
plotted in Hinton diagram form at the right of each trace: white and black 
squares correspond to positive and negative influences, respectively, on 
the relevant genes, with the size of the square being proportional to the 
strength of the influence.
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Figure 9. Time course profiles of the synthetic data set generated from the model 
of Zak et al. (16). We show only the levels of (A) the mRNA concentrations MA, 
MB,  .  .  .  , MK, and (B) the hidden levels of the associated proteins A, B,  .  .  .  , K. 
The vertical axes denote the levels measured in terms of log(M/M0), where M is
concentration and M0 is concentration at time zero, and the horizontal axes are 
time, in hours. The vertical dotted lines in both plots denote the time window of 
data for which mRNA levels were provided to the VBSSM algorithm. The time 
window begins at the peak of the ligand injection, which is shown on the lower 
plot as the bold curve Q (the ligand log concentration is vertically offset for 
clarity).
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Figure 10. (left) Unpruned hidden state trajectories for a selection of four 
models of varying state-space size: k = 7, 9, 12, or 15; and (right) the influence
of each of the hidden states on the 10 observed mRNA levels denoted A through 
K, expressed as Hinton diagrams. Note that the polarity of the hidden states 
trajectories for the top two rows are opposite to the others, and this is canceled 
by the opposite polarity seen in those two Hinton diagrams.

Interestingly, most of these hidden state trajectories show a sharp 
negative peak just after 10 h, corresponding to injection of the ligand Q 
and the sharp drop in the concentration of protein E (which models the 
receptor to which the ligand Q binds). The Hinton diagram indicates that 
these hidden states have greatest influence on the expression of genes F 
(which is directly regulated by the bound receptor, EQ), B and D (which 
are both up-regulated by the transcription factor encoded by gene F). 
We can thus speculate that one of the hidden states is plausibly capturing 
some of the dynamics of this hidden process.

4. Conclusions

Despite the assumptions inherent in linear SSMs, the results of the simu-
lation studies described above indicate their usefulness as a tool for 
“top-down” reverse engineering of gene regulatory networks. Based on 
synthetic data generated from a model that contains definite nonlineari-
ties in the dynamics of the hidden factors (arising from the oligomeriza-
tion of transcription factors), we demonstrate an overall accuracy in 
transcriptional network reconstruction from the mRNA time series mea-
surements alone of approximately 68% AUC for 12 time points, and 
better still for data sampled at a higher rate. A key ingredient of our 
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models is the inclusion of “hidden factors” that help to explain the cor-
relation structure of the observed measurements. These factors may 
correspond to unmeasured quantities that were not captured during the 
experiment and may represent underlying biological processes. Results 
from the modeling of the synthetic data also indicate that our method is 
capable of capturing the temporal nature of the data and of explaining 
it using these hidden processes, some of which may plausibly reflect
dynamic aspects of the underlying biological reality.
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13
Modeling Spatiotemporal Dynamics 
of Multicellular Signaling
Hao Zhu and Pawan K. Dhar

Summary

Molecular interaction in cells is context dependent, rich in semantics, 
spatiotemporally evolvable, and forms emergent networks. To unveil how 
molecular-level signaling leads to cell and tissue level phenotype, a com-
putational model must link intra- and intercellular signaling, capture 
emergent events, and reconstruct network evolution. We have developed 
a multicellular modeling method under a Linux-based platform that 
combines features of cellular automata (CA) and object-oriented pro-
gramming (OOP). In this chapter, we describe the simulation method 
and supporting tools to capture spatiotemporal dynamics of signaling 
networks and provide two illustrative examples. We also demonstrate 
that the order, timing, and networking of signaling within and between 
cells are fundamental characteristics that must be captured to fully 
understand signaling networks.

Key Words: Cellular automata; signaling; multicellular; object oriented; 
notch; planar cell polarity; emergent; somite segmentation; development.

1. Introduction

Signaling networks are both emergent and evolvable (1). “Emergent” 
indicates that the networking of molecules is context dependent and 
reprogrammable. A typical example of signaling reprogramming comes 
from the cell fate transformation in Drosophila melanogaster eye devel-
opment. If the gene rough is ectopically expressed in the presumptive 
R7 cells, the developing ommatidial cells transform their fate from R7 
to R1/6 (2). “Evolvable” means networks in cells may undergo significant
structural evolution, for example, during cell differentiation in embryo-
genesis and cell dedifferentiation in carcinogenesis (3). The phenomenon 
of “evolvability” is typically seen during the differentiation of stem cells. 
Even in the single-cell organism yeast, the transcriptional regulatory 
network is significantly altered under different cell conditions (4). Signal-
ing networks in cells of metazoans, which are closely coupled through 
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cell communication and modified during developmental and pathophysi-
ological processes, are more complicated and interesting. Given that 
different signaling networks impart different functions and identities to 
cells, an issue of fundamental importance in biology is to reveal when, 
how, and under what conditions signaling networks change temporally 
in one cell and spatially in multiple cells (Figure 1).

Studying developmentally regulated networks in vivo comes with 
technical constraints. As molecular interactions within cells cannot be 
entirely and continually measured due to the prohibitive cost of experi-
ments, tissue level observations provide only limited molecular-level 
pointers. Moreover, to get data from gene knockout and mutation exper-
iments to infer signaling networks is time consuming; and to describe 
dynamics of their structural changes under various abnormal conditions 
is even more challenging. An in silico experiment, on the other hand, 
does not face such technical constraints if key data are available.

Several biological issues must be understood to model signaling pro-
cesses reliably. First, the existing knowledge of molecular interactions 
includes both the biochemically confirmed and the genetically inferred. 
For example, an interaction between molecules A and B may be context 
dependent and subject to the availability of different unknown connectors

Figure 1. A hypothetic state transition map of a 6-gene network. Four gray 
circles designate the attractor states, each corresponding to a particular cell fate 
(differentiation, proliferation, senescence, cell division cycle, and apoptosis). 
Dotted lines delineate the basins of attraction. The green and orange large 
arrows denote two attractor state transitions (the cell fate switch from prolifera-
tion to differentiation and apoptosis). Simulating how the system evolves from 
an undifferentiated state (marked in red) into the differentiation attractor may 
disclose much about gene regulation dynamics. A more interesting case may be 
from a proliferation state to the basin of apoptosis attractor. (Redrawn from 
Huang, 2001.)
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and regulators. A model should therefore be adaptable to new informa-
tion. Second, during development, signaling processes within cells are 
tightly coupled to the signaling process among cells, and evolve with dif-
ferentiation. This demands modeling formalism to be adequately flexible
to allow dynamic reconfiguration of links. Third, an interaction known at 
semantic level, usually symbolized as A→B (activation) or A–| B (inhibi-
tion), may be unknown at the biochemical level, i.e., whether it involves 
phosphorylation, dephosphorylation, binding, cleavage, etc. Fourth, quan-
titative data is unavailable in a majority of cases. The nature of biological 
processes therefore calls for an inclusion of both qualitative and quantita-
tive description. Finally, molecular interactions are discrete events.

The aforementioned issues call for special methods and tools. Using a 
combination of CA and OOP, we developed a new programming lan-
guage for building in silico models of heterogeneous cells (5). Simulation 
studies demonstrate that the order, timing, and networking of signaling 
in cells greatly enrich our understanding of the dynamics of pathways 
and networks.

2. Methods

2.1. Two-Tier Parallelism for the Description of Parallel Networks

Local interactions leading to global complexity is a common feature of 
both physical and biological systems. Although CA have been widely 
used to model physical systems of massively simple and identical com-
ponents (6,7), CA-based biological models, especially the rule-based 
ones, are not equally successful because of the hierarchy and heterogene-
ity of multicellular systems. This may change given a renewed interest in 
the language based CAs in contrast to the rule based ones (8). To describe 
diverse and multiple molecular species within a cell, we have introduced 
a new program component object, and additional features into the CA 
language Cellang. Our aim was to encapsulate the structure and function 
of each molecule into an object (5). In addition to the predefined variable 
time, another variable, msgq (message queue), was automatically created 
for each molecule/cell to implement message passing based on molecular 
interaction and cellular communication. In a message, there can be bound 
(with a value), unbound (to get a value), and anonymous (unused) vari-
ables, each with different roles. Floating point data for quantitative com-
puting, function call and runtime perturbation have also been included. 
For example, the built-in function position () returns the global address 
of a cell to allow runtime perturbation to the cell, while sendmsg sends
messages between two cells. The computational program, shared and 
executed by all automata cells, consists of a cell program (the traditional 
component) and a new group of molecule programs (objects), creating a 
two-tier mapping between automata and biological cells; and between 
objects and molecules. These two kinds of cells, and the molecules and 
objects, are not distinguished from each other in the remaining parts of 
the chapter. Although all the cells share an identical set of molecule 
programs, the if statement, with a cell type field, guides cells to run a 
particular subset of molecular programs, which run on demand.
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The initial distribution of cells in a 2D or 3D space is processed 
separately with an edit tool. This file is used as the input to a model. 
Both computational program and cell array file can be freely modified
at any time.

2.2. Separating Discrete Molecular Signaling from Continuous 
Concentration Computation

Molecular interactions, such as ligand-receptor binding, are essentially 
discrete events. Instead of rigidly wiring molecule A to molecules B and
C with an equation

dA/dt = fa(A) + fb(B) + fc(C) + A0 (1)

and continuously computing molecular interaction, we adopt a dynamic 
and discrete binding among them through message passing, which can 
be formalized as

dA/dt = msg(A) · fa(A) + msg(B) · fb(B) + msg(C) · fc(C), (2)

where msg(X) means the message from X to A. Therefore, the computa-
tion of dA/dt at a particular time step depends on the arrival (or not) of 
messages from A, B, and C. This allows a molecule to realize different 
interactions with different counterparts at different times and in differ-
ent contexts (Figure 2). For example, in molecule B, message bind is sent 
to A in the local cell by

sendmsg(cell.(A, bind, _))

or to A in a neighboring cell located as [x,y] (relative address) by

sendmsg([x,y]·(A, bind, _))

In A, the message is read by

Sender molecules Receiver A

Message patterns Actions

action1mc & mb

action2mf

mb mc md me
action3mb & –md

action4–mg & (mb | mc)

......

...

Message queue

B

C

D

E

F

G

Figure 2. Event-driven computation in an object. A message queue is created 
by the system in each object to buffer incoming messages. Behaviors of a mole-
cule at any time step are determined jointly by its current state and received 
messages.
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if msgq $ _.(B, bind, _) then action
end.

The operator “$” means “contain” and the anonymous variable “_” indi-
cates the address of the sending cell is neglected. Terms fa, fb, and fc in
equation (2), which are encoded in action part and implement 
quantitative computing without semantic information, are actually not 
different from those in equation (1). Obviously, cellular and molecular 
activities in cells are turned on by received messages, instead of by fixed
links in formulas (Figure 2). In other words, a system is formalized for 
computation-on-demand.

2.3. Integrating Signaling Activities into Event-Action Tables

Because a molecule (a protein, a gene, or a binding site) may interact 
with several molecules (proteins and DNA binding sites), it is necessary 
to organize all possible interactions in the form of an event-action table, 
which, akin to a truth table, describes how molecules respond to the 
incoming signals (Figure 3). We emphasize that, with the rapid increase 

B

A
C

D

C

B

B

E

A

F G

D

msg(B)

msg(C)

msg(D)

msg(E)

msg(F)

msg(G)

fb(B)

fc(B)

fd(B)

fe(E)

ff(F)

fg(G)

A

= fb(B)+fc(C)+fd(D)
dA

dt

Figure 3. Systematic representation of molecular interactions. Solid lines in (A) 
indicate interactions happened among a molecule and its three partners under a 
particular condition, which are hardwired in a differential equation. Dashed lines 
in (B) indicate all possible interactions of the molecule with all of its partners. To 
describe interactions under different conditions, an object program is organized, 
such as an event-action table in which msg(X) means the signal from molecule X 
and fb(X) gives the equation for computing the contribution from X.
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in genomic and proteomic data, the event-action tables can be indepen-
dently organized, and more importantly, shared by different models. This 
greatly increases the modeling efficiency and helps build an integrated 
model of the whole cell.

2.4. Dynamic Capture and Display of Signaling Events

The first step is to automatically capture all message-passing events 
among molecules continuously. A group of windows, whose number and 
size are determined by the system based on a particular model, are 
created at runtime, each corresponding to a message (Figure 4). The 
chronological signaling events in one cell and the parallel signaling 
events in all cells are displayed (Figure 4). In a two-dimensional model, 
the message XXX from molecule A to B in the same cell is captured and 
assembled as A_XXX_B_0_0; 0_0 is used to indicate the relative address 
of the sender cell at [0,0]; the message from A to B in the top-left neigh-
boring cell is captured and assembled in the target cell as A_XXX_B_
p1_n, p1_n1 indicates the relative address of the sender cell at [+1,−1].
Treating signaling between the same molecule in different cells as differ-
ent message passing helps effectively reveal the role and property of cell 

A_activate_B_0_0

A_activate_B_p1_p1

D_inhibit_C_0_0

Time

Time

Time = 232

Figure 4. Dynamically captured and displayed signaling events at a particular 
time step in a two-dimensional model. Each window depicts a message passing 
event that occurred in the whole-cell space. Cells that received the message are 
marked in black.
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communication. In addition to message passing, attributes such as con-
centration of proteins and state of genes are also displayed.

2.5. Dynamic Reconstruction of Evolving Networks

A network is represented by a directed graph. A graph G = (V, E) consists 
of a set V = {v1, v2,  .  .  .  , vn} of vertexes (molecules) and a set E = {(vi, vj) | i,
j ∈ V} of edges (interactions). In the developed system, V is alphabetically 
ordered by molecular identification to track network evolution. We used 
the adjacency matrix to represent a directed graph. An adjacency matrix 
M = [mij] of G is an n by n matrix with entries mij = 0 if (vi, vj) ∉ E and mij

≥ 1 if (vi, vj) ∈ E. Different values of mij indicate different interactions. In 
graph theory, a directed graph G is strongly connected if there is a path 
in G between every pair of vertices V, and is weakly connected if the 
underlying undirected graph Ḡis connected. Apparently, because not all 
genes are ON at any time and edges in E have not only directions but also 
semantics, connected graphs, even weak ones, rarely exist. Typically, if 
genes are named in lowercase (e.g., notch) and proteins are named 
starting with a capital letter (e.g., Notch), the matrix demonstrates four 
distinct zones reflecting gene–gene, gene–protein, protein–gene, and 
protein–protein interactions, respectively (Figure 5).

The adjacency matrix provides a structural basis for network recon-
struction and analysis. During simulation, an array of matrix, M[1] to M[n],
n being defined by the user when compiling a model, is created by the 
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Figure 5. A signaling network in the form of adjacency matrix in a cell at a spe-
cific time step.
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system to record network topology in a chosen cell from time step 1 to 
time step n. The value of mij in M[t] is determined by the occurrence or 
not of the signaling event between molecules i and j at time step t.

3. Applications

3.1. Case 1: One In Silico Cell Represents One In Vivo Cell—Notch
Signaling Propagation

3.1.1. Background
Cells rely on information from neighboring cells, mostly through ligand–
receptor interaction, to determine their fate or fulfill their function. A 
common and important issue in intercellular signaling is that the range 
of signaling among cells must be precisely controlled. For pathways with 
secreted ligands, like endothelial growth factor (EGF) signaling, the 
range of signaling is controlled by different diffusion distance of positive 
(spitz) and negative (argos) ligands (9). For pathways with membrane-
tethered ligands, such as Notch signaling, the mechanism is unclear.

To study Notch signaling propagation in cells, we build a mouse somite 
segmentation model in a 256 × 256 cell array, with each automata cell cor-
responding to a biological cell. During embryogenesis, as the tail bud grows 
caudally, Notch signaling periodically initiates in the tail bud and propa-
gates rostrally in presomitic mesoderm (PSM), each wave of signaling 
ending with the formation of one somite at the rostral end (Figure 6). Four 

tailbud

Caudal growth Rostral signaling

PSM somites

Figure 6. The Notch signaling propagation model in a preexisting cell space.
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groups of genes have been identified as key players during the process: i) 
fgf8 produces a mRNA and protein gradient in the PSM cells to provide 
positional information for segmentation (10,11); ii) Notch and its ligands 
Delta like 1 (Dll1) and Delta like 3 (Dll3) trigger intercellular communica-
tion (12,13); iii) Presenilin1 (Psen1) performs an intracellular Notch cleav-
age to produce the transcription factor Notch intracellular domain (NICD) 
that connects inter- and intracellular signaling (14); and iv) NICD-
activated, cyclic-expressed genes (lunatic fringe [lfng] and hes in mouse) 
(15–17) function downstream of, but also feedback onto, Notch with roles 
that are not fully understood. Except for fgf8, the other genes belong to the 
Notch pathway, implementing and controlling Notch signaling in PSM 
cells. Besides the much-studied periodicity, or segmentation clock, another 
key feature of Notch signaling in PSM is the unidirectional propagation of 
signaling from the tail bud to the rostral end. Because both Notch and its 
Delta ligands are constitutively detectable in PSM cells, theoretically, if 
there were no control mechanism, ligand–receptor binding would happen 
liberally in cells, which is not observed under normal conditions.

3.1.2. Method
In the Notch signaling propagation model, 1 time step of automata rep-
resents 1 min, and Notch signaling is artificially initiated in the tail bud 
every 120 min. By default, the state of the gene is ON or OFF, but has 
multiple expression levels at the ON state. Protein concentration is 
determined by its synthesis and decay rates. Synthesis is described by 
first-order growth (18) and decay by first-order decay (19,20). Two ver-
sions of the model are built to examine the performance of different 
computations. In the ordinary differential equation (ODE) version, 
protein synthesis is described by a variant of Verhulst growth equation

dx
dt

k x x= −( )1 1 (3)

(Δt = 0.1), and protein decay is described by a variant

dx
dt

x= −α1 . (4)

In the finite difference equation version, protein synthesis is described 
by the corresponding finite difference equation

 xt+1 = k2xt(1 − xt), (5)

and protein decay by

 xt+1 = a2xt (6)

(21). Concentration of every protein is computed with the same equa-
tions, but different parameters. In equation (5), when k2 has different 
values, it produces different behaviors, i.e., monotonic approach to a 
steady state, alternate approach to a steady state, periodic cycles, and 
aperiodic behavior. We chose the values of k2 between 1.1 and 2.0 to 
enable a monotonic approach to the steady state. As expected, we found 
that both versions produced identical results when run in parallel. 
α1, α2, k1, k2 of each protein are from published literatures, but the 
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concentration at which a protein sends signals to its counterparts is 
largely unknown. We tested a few assumptions nevertheless. Signaling, 
as well as protein concentration and gene state, in one cell and in a 
line of cells (note, in this case signaling happens only between caudoros-
trally connected cells) are captured and displayed in Figure 7 (some 
molecules).

3.1.3. Results
The simulation results of Notch signaling are encouraging. First, simula-
tion reveals that the experimentally observed Notch induced Notch 
block by Lfng suppresses inverse propagation of Notch signaling in PSM 
cells. Activated Notch, cleaved by Psen1, produces transcriptional factor 
NICD, which in turn activates the expression of lfng and hes7. Lfng, 
probably through Dll3, blocks non–cell-autonomous Notch–Delta inter-
action. This block is later removed by Hes7. Botch mutations in and 
overexpression of lfng cause atypical signaling within cells, which fails to 
block Notch binding and leads to reciprocating signaling propagation 
among cells. The impaired control mechanism leads to changed response 
of the cells to the positional information established by the Fgf8 gradient, 
resulting in disordered cellular patterning (Figure 7). Second, signaling 

NICD.value

(1) Delta.value

Lfng.value

Hes7.value

Hes7.value

NICD.value

NICD.value

NICD.value

(2) Delta.value

Delta.value

Delta.value(1)

(2)

Lfng.value

Lfng.value

Lfng.value

Notch_Produce_NICD_0_0

NICD_TrActivate_lfng_0_0

NICD_TrActivate_Lfng_0_0

NICD_TrActivate_Lfng_0_0

Lfng_Block_Notch_0_0

Lfng_Block_Notch_0_0

Hes7_TrInhibit_lfng_0_0

Hes7_TrInhibit_lfng_0_0

Notch_bind_Delta_n1_0

Notch_bind_Delta_n1_0

Notch_bind_Delta_n1_0

Notch_Produce_NICD_0_0

Lfng_Block_Notch_0_0

Lfng_Block_Notch_0_0

A

B

Figure 7. Captured signaling in the Notch signaling model. Caudal is to the left 
and rostral to the right. (A) Part of instant gene expression (left), protein con-
centration (left), and signaling profile (right) in a line of cells. (1) The normal 
case at time step 685. Notch signaling is regular and propagates rostrally. (2) 
When Lfng synthesis rate is changed from 1.65 to 1.25, inverse Notch signaling 
occurs. Although Lfng expression profile remains largely unchanged, Lfng_
Block_Notch_0_0 is different from normal. The band of the signal in cells is also 
narrow and broken. (B) Part of the dynamic process of gene expression (left), 
protein concentration (left), and signaling profile (right) within a cell from time 
step 0 to 685. (1) and (2) correspond to (1) and (2) in A, respectively.
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exhibits different features at cell and tissue levels. Compared with the 
chaotic intercellular signaling among cells in lfng mutant, signaling within 
cells does not vary much (Figure 7, A and B). Except for the frequent 
backward binding of Dll1 to Notch, little anomaly is seen. The interac-
tions among Notch, Dll1, Hes7, and Lfng are accelerated, but still quite 
regular. Another feature of signaling at tissue level is that the bands of 
Lfng_block_Notch in abnormal cases are narrower and more shattered 
than those in the normal case, indicating a failed repression of inverse 
Notch binding in some cells. We note that these tissue level features 
ostensibly demand multicellular modeling of signaling. As reconstructed 
signaling at tissue and cellular level illustrates different properties and 
dynamics, we suggest using signaling profile to depict them, which is rel-
evant to but different from gene expression profile (Figure 7, A and B). 
Third, lfng mutation demonstrates that, a simple error in cell communica-
tion can lead to intricate cellular patterning. Finally, we observed that, 
as long as the order of signaling does not change, the outcome also does 
not change, irrespective of changes in molecular concentrations and 
assumed signaling thresholds. In other words, assumptions, especially 
those on signaling thresholds, do not tune a model and its corresponding 
simulation results specific to particular conditions, but rather, help iden-
tify general features of molecular signaling. The observed robustness of 
signaling in cells under various simulated perturbations partly explains 
the amazing accuracy of molecular systems, even though they are not 
precisely digitalized as artificial systems.

3.2. Case 2: Multiple In Silico Cells Represent One In Vivo
Cell—Planar Cell Polarity

3.2.1. Background
Epithelial cells show a clear perpendicular polarity in respect to their 
apical/basal axis. This form of polarity, called planar cell polarity (PCP) 
(22,23), is important for the function and migration of epithelial cells. In 
the eye, wing, and abdomen of D. melanogaster, this cell polarity is dem-
onstrated by the direction of hair and bristle, and is controlled by the 
signaling among a group of molecules with a hierarchical relationship 
(24). The core at the middle layer implementing the conserved function 
of cell polarization includes frizzled (fz), dishevelled (dsh), prickle-spiny-
legs (pk), flamingo (fmi), van gogh (vang), and diego (dgo). Fmi is a 
membrane protein, and it accumulates at both the distal and proximal 
edges of cells (25). Vang, which is asymmetrically located at the proximal 
side of cells, functions in the proximal and distal movement of Pk and 
Dsh (26). Fz is a transmembrane Wnt receptor with a slightly initial 
asymmetrical distribution on the cell (27). Dsh is also a Wnt pathway 
component. Pk is identified to mediate the negative feedback amplifica-
tion among Pk, Dsh, and Fz, which amplifies the slight initial asymmetry 
of Fz and the relocation of these proteins in the cell (28). Mutations in 
these genes lead to domineering nonautonomy. That is, loss-of-function 
clones of fz, vang, and pk induce changed cell polarity in neighboring 
wild-type tissue (22,28,29).
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In the first phase of PCP during the 0 h–8 h after prepupa formation 
(APF), Fmi, Fz, and Dsh uniformly localize around the perimeter of the 
cell; in the second phase between 18 h and 32 h APF, these proteins adopt 
asymmetrical subcellular localization. Fmi is present on both proximal 
and distal cell boundaries with no detectable asymmetry. During the 
negative feedback among and mediated by Fz, Pk, and Dsh, Fz and Dsh 
localize to the distal side and Pk localizes to the proximal side (28). 
Because Fmi’s distribution does not change in the second phase and its 
contribution to the feedback amplification is unclear, our current PCP 
model, which focuses on the proximodistal localization of Pk, Dsh, and 
Fz in the second phase, does not include it. Also, as Vang works with Pk 
at the proximal side of the cell, shares the same distribution as Pk’s, and 
takes a controversial role (26,30), it is not included. The abnormal signal-
ing among Fz, Dsh, and Pk at the second phase alone can lead to domi-
neering nonautonomy.

3.2.2. Methods
Although the feedback amplification hypothesis explains some PCP 
phenomena, and a partial differential equation (PDE)–based mathemat-
ical model improves our understanding of domineering nonautonomy 
(30), a few issues remain. The key question is whether and how the feed-
back amplification works under different global directional cues whose 
properties have not been revealed experimentally. It is feasible to infer 
the global directional cue based on the existing knowledge of PCP.

A few experimental observations are available for model building: (1) 
Information in the PCP signaling pathway flows from the receptor Fz to 
the cytoplasmic protein Dsh (31); (2) the discrete localization of Fz and 
Dsh appears to result from a cell autonomous feedback amplification
mechanism (32,33); (3) Pk functions nonautonomously to generate asym-
metry of Fz/Dsh activity (28,34); (4) Proximal localization of Pk depends 
on intercellular difference in Fz activity (28). Although these observa-
tions hint at the existence of feedback amplifications among the three 
core molecules of PCP signaling, these molecules themselves, along with 
a few regulators (Fmi, Dgo, and Vang), are insufficient to form a com-
plete network with biochemical details to build a quantitative model with 
experimentally determined parameters. Therefore, we chose not to use 
differential equations to bind them together to quantitatively simulate 
their concentration and physical interaction (30), but instead to use a 
simple program to simulate the feedback among and the movement of 
Pk, Dsh, and Fz.

Because a key feature of planar cell polarity is the movement and 
asymmetric distribution of molecules in a cell, an uncompartmented 
automata cell may not represent a biological cell accurately. Considering 
the shape of an epithelial cell, we use six automata cells to represent one 
biological cell. The two-dimensional model contains 114 × 114 automata 
cells, or 2,166 biological cells. These six automata cells share a unique 
identity number generated at runtime with the random number genera-
tor function, and they are linked in a specific manner (Figure 8). However, 
each automata cell is an independent computational unit. The unique 
identity number is used to determine whether an intercellular signaling 
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between two automata cells is within the same biological cell or between 
two different ones. The movement of molecules in different automata 
cells is implemented as intercellular signaling. The message is linked to 
an attached item to indicate the amount of the moved molecule. For 
example, in the Fz object in a cell, we use

sendmsg([i,j]·(Fz, move, quantity))
value:= value − quantity

to move a portion of Fz to the automata cell at [i,j]. In the Fz object in 
the target cell, we use

if msgq $ _.(Fz, move, _amount) then
value:= value + _amount
end

to receive the migrated Fz; the unbound variable _amount is used 
to read the value. Bound and unbound variables in a message are 
defined freely, except that unbound variables begin with “_ .” The 
function position(), which returns the global coordinates value of an 
automata cell, is used to assign cells different initial Fz asymmetry. The 
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Figure 8. Intercellular communication and intracellular molecular movement 
during PCP. (A) Each epithelial cell is represented by six automata cells with 
particular connection. (B) Driven by the mutual interactions among them, Pk, 
Fz, and Dsh move toward different directions in a biological cell. Double arrows 
indicate intercellular molecular interaction, with the external Fz cell nonautono-
mously attracting Pk, and vice versa. Single arrows denote intracellular molec-
ular interaction, with the local Fz cell autonomously attracting Dsh, and vice 
versa. Proximal is to the left and distal to the right.
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initial concentration of molecules and the speed of molecular movement 
are assumed.

3.2.3. Results
The simple CA-based model shows interesting results. First, simulation 
produces the PCP phenotypes. The feedback amplification among Fz, 
Dsh, and Pk, whose regulation mechanisms are unclear, seem to be nec-
essary and sufficient for the generation of polarity repolarization in both 
wild-type and in mutant cells (29) (Figure 9). Second, we performed 
simulation with different parameter values, along with a change in mole c-
ular concentration, and found that under all conditions, identical results 
are obtained. This agrees with our hypothesis, for it is the relationship
among the molecules, not a specific parameter value that determines cell 
polarity. Parameter independence, along with the various simulated 
phenotypes, implies that the feedback amplification among Pk, Fz, and 
Dsh is robust. Third, phenotypes of PCP are slightly different in different 
tissues because of the tissue-specific regulation and molecular environ-
ment (28). Inadequate experimental data exist to explain how different 
depths of domineering nonautonomy are controlled. Our study suggests 
that the depth of domineering nonautonomy may be parameter depen-
dent. Finally, we examined cell polarity signaling under different global 

A B

C D

Figure 9. Weak and overexpression of fz leads to different domineering nonau-
tonomy. Proximal is to the left and distal to the right, and red color indicates 
higher protein concentration. In all pictures, molecular slope means the slope in 
the cell. (A) Pk distribution with clones of fz− mutation. Pk slope at the outermost 
layers in the clones points outward to the clones, and Pk slope in wild-type cells 
distal to the clones is reversed and points outward from the clones. (B) Fz 
distribution with clones of fz− mutation. Fz slope at the outermost layers in the 
clones points inward to the clones, and Fz slope in wild-type cells distal to 
the clones is reversed and points inward to the clones. Note that Fz slope within 
the clones (distal side) is also reversed. (C) Fz distribution with fz overexpres-
sion. Fz slope at the outermost layers in the clones points outward from the 
clones, and Fz slope in wild-type cells proximal to the clones is reversed and 
points outward from the clones. (D) Fz distribution with pk overexpression. Fz 
slope at the outermost layers in the clones points inward to the clones, and Fz 
slope in wild-type cells distal to the clones is reversed and points inward to the 
clones. Note the similarity between B and D.
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directional signals. We observed that the gradient zigzag distribution of 
Fz produces the best-observed phenotypes, and that polarity propagation 
can overcome small, local direction errors. Global directional signaling 
also facilitates PCP and restrains domineering nonautonomy. In the 
absence of a global directional signal, polarization would propagate 
ceaselessly in cells.

4. Discussion

Networking and evolution are two important features of cellular signal-
ing. Evolving signaling network in metazoan cells, driven by crosstalk 
among signaling pathways like Notch, FGF, EGF, Hedghog, TGFβ, and 
Wnt and perturbed by extracellular signals, is a hot research area. Network 
analysis has been recognized as an effective method for the understand-
ing of biological systems at the molecular level (35,36). However, on the 
one hand, assembling signaling network manually from experimental data 
is difficult; on the other hand, analyzing the complicated “canonical” 
network, such as that in the study by Kohn (37), is challenging, given the 
prevalence of temporally and spatially overlapped signaling events in 
cells. By using well-known biological examples, we describe a computa-
tional method for modeling and simulating the dynamic networking of 
signaling in cells. The reconstructed dynamic evolution of signaling 
network shows a remarkably high biological accuracy.

Although modeling parallel signaling processes in a multicellular 
context is still in its infancy, a few methods and tools exist. Besides classic 
CA and PDE, multicellular modeling with an array of ODE has been 
reported (38,39). However, it is impractical to incorporate evolving cel-
lular connections and communication in a large, dynamic cell population 
undergoing growth and patterning, using classic differential equation–
based methods. When a model is large (for example, a 100 × 100 cell array 
contains 10,000 cells), explicit description of multicellularity becomes 
unrealistic. Although both CA and OOP have been widely used (40,41) 
the novelty of our method lies in building a hybrid system that combines 
the most desirable features of each system. Using this hybrid system, it 
was observed that molecular-level tissue scope modeling can explain 
complex tissue level phenotypes with captured signaling events and 
reconstructed signaling networks.

In equation (2), signaling is discrete in time (represented by msg(X)),
but continuous in value (represented by fa). In case 1, we let it be discrete 
both in time and value (i.e., occurrence or nonoccurrence). In fact, as 
shown in case 2, a more flexible description can be realized. A bound 
variable, named strength, which is a floating-point or integer data, can be 
defined in a message sendmsg(cell.(X, transcription, strength)) to more 
precisely describe the strength of an interaction. Generally, if signaling 
is discrete in value, this method involves less independent parameters 
than differential equation–based biochemical models and provides a 
workable solution to modeling complex and evolvable signaling in multi-
ple cells. In addition to separating signaling from computation, molecules 
are computationally programmed in an object-oriented way to facilitate 
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the description of emergent signaling, including those induced by tem-
perature-sensitive alleles and external perturbations. Given that the 
mathematical traits and biochemical processes of many molecular activi-
ties remain unclear, we argue that this method, at least at current stage, 
is applicable and biologically relevant. The back-end engine, comprising 
model-independent utilities, captures the occurrence and evolution of 
signaling during simulation. On one hand, we note that simulating normal 
morphogenesis process identifies the default signaling thresholds; on the 
other hand, we find that as long as the order of signaling does not change, 
the outcome remains unaffected, irrespective of changes in molecular 
concentrations and signaling thresholds. The robust signaling network 
explains why natural systems work more efficiently and accurately than 
artificial systems.

Although network topology hints at the general principles of molecu-
lar interaction, connectivity itself doesn’t reveal the entire story because 
of weighted interactions and ontogenetic network evolution. At least two 
more factors influence signaling processes. The first one is the order of 
molecular interactions that can decisively influence the course and 
outcome of signaling. In the first example, we show that it is the wrong 
order (an undue Notch block and backward Notch/Delta binding), but 
not the wrong partnership that causes the reverse Notch/Delta signaling 
and impairs the unidirectional segmentation of presomitic cells. Feed-
back within and interaction among pathways may generate many differ-
ent orders of molecular interactions. The second factor is the timing of 
signaling. A premature signal may drastically change the default-signal-
ing path by emergent formation of key transcription complexes, as 
happens in many cell fate transformations. The eye-to-antenna trans-
formation in D. melanogaster induced by maneuvered Egfr and Notch
signaling is a typical example (42). As signaling at the wrong time and 
in the wrong order may explain a large number of circuit anomalies (43), 
the two factors, contributing to signaling dynamics, deserve more inves-
tigation. The partnership of the molecules, order, and timing interact and 
impart emergent properties. An in silico model of a signaling network 
must take into consideration all of these factors. In the Notch signaling 
model, it is difficult to explain how tissue-level phenotype emerges from 
molecule-level interactions (from protein concentration and gene state 
data), if we do not consider the order and timing of signaling. Last, we 
note that for both the captured signaling events and reconstructed signal-
ing networks, a deeper analysis with nontraditional methods can be per-
formed (44,45).

An interesting application of the proposed modeling and simulation 
method is its potential in studying attractors and basin of attractors in 
cell fate determination and tissue differentiation (46). Attractors are sets 
of states that are invariant under system evolution and indicate regions 
where a dynamic will ultimately end up. A basin of an attractor is a 
set of states that will evolve toward their corresponding attractor eventu-
ally. Although both of them have clear definitions, identifying them in 
real biological systems, either in vivo or in silico, remains largely unex-
plored. Moreover, little is known about the molecular topology of signal-
ing network in respect to the state and basin of attractors and how 
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topological structure drives a cell from basin of attractors to an attractor. 
With dynamic reconstruction of signaling network during cellular dif-
ferentiation, there is a strong possibility that these issues can be effec-
tively addressed.

Finally, although our modeling method is a programming language 
combined with backend (model-independent) supporting utilities, 
various mathematical formalisms, such as stochastic and deterministic 
systems, reaction-diffusion systems, differential and difference equations, 
and Boolean networks (47) can be implemented within the framework 
of our modeling system. Physical parallelism with built-in OpenMP to 
run a model on multiprocessor computers will be available. The system 
runs under Linux and is freely available upon request.
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Kinetics of Dimension-Restricted 

Conditions
Noriko Hiroi and Akira Funahashi

Summary

The intracellular environment is crowded with skeletal proteins, organ-
elle membranes, ribosomes, and so on. When molecular movement is 
restricted by such environments, some biochemical reaction processes 
cannot be represented by classical models, which assume that reactions 
occur in simple Newtonian fluids. Dimension-restricted reaction kinetics 
(DRRK) modeling is a method that can represent dimension-restricted 
reactions. We introduce the methods of DRRK in each case of reaction 
type. DRRK has another advantage in that it can be quantitatively evalu-
ated by biochemical experiments. We also introduce the procedure of 
applying it for experimental results. This modeling method may provide 
the basis for in vivo–oriented modeling.

Key Words: Fractal kinetics; percolation theory.

1. In Vivo–Oriented Modeling

The in vivo environment, which is the actual space for biochemical 
reactions, is very different from ideal conditions, i.e., well-diluted 
solutions. The organization inside a cell resembles that of a protein 
crystal with 40% water (1,2) (Figure 1). The assumption of reaction space 
conditions for classic numerical models, such as the mass-action law 
and the Michaelis–Menten equation, are ideal conditions (3–5), which 
differ from the actual conditions of in vivo biochemical reactions. 
Although classic models can be used to compute in vivo reactions with 
sufficient approximation, such approximation is not suitable as a general 
approach. However, to develop a high-precision model that can be prac-
tically used for scientific investigation as well as drug discovery process, 
a new method that can be applied to biological phenomena occurring in 
various situations, including nonideal conditions, is required. In fact, 
there are several biochemical reactions that cannot be represented by 
classic numerical models, even with optimizing/fitting by experimental 
data (6–10).
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S1

S2

S2S1

S3
S1

in vitro reaction environment: free 3D reaction space

in vivo reaction environment: crowded reaction space

10 cm

5 nm

2 μm

10 μm

Figure 1. In vitro reaction environment versus in vivo reaction environment. A 
typical protein diameter is approximately 1022 times smaller than its reaction 
space. Then reaction species can behave as in Newtonian fluids. Proteins in intra-
cellular environment are packed with only 1.5 times the volume of water. Red, 
skeletal proteins; blue, organelle membrane; green, ribosomes (1,2).

Dimension-restricted reactions are such a phenomena. Appropriate 
parameters cannot be determined from the experimental data for a 
classic, ordinary differential equation (ODE)–based model when the 
target reaction is a dimension-restricted reaction (6–10). Although sto-
chastic modeling may be able to model probabilistic distributions of 
molecules in the dimension-restricted space, values for each transition 
probability are difficult to measure experimentally, and so, such models 
tend to be qualitative in practice. Partial differential equation (PDE)–
based modeling captures spatial distribution, but the space is assumed 
to be homogeneous, and data to calibrate such models, cannot be mea-
sured in practice.
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Because of crowding in in vivo environments and the restriction of the 
movements of the molecules in intracellular space, many types of in vivo
reactions are regarded as dimension restricted. For precise simulation of 
biological processes, it is critically important to establish a realistic in
vivo situation method in which parameters can be decided experimen-
tally and simulation results can be verified experimentally.

We have developed a theory of biochemical DRRK that can represent 
reactions in crowded in vivo situations. This chapter reviews and dem-
onstrates some applications, including how this approach can experimen-
tally decide model parameters, and experimentally verifies simulation 
results.

2. DRRK

2.1. Fundamental Theory and Applications (Figure 2)

Einstein and Smoluchowski formulated the concept and equations of 
diffusion in a continuous medium. Einstein’s equations are based on the 
assumption that random motion occurs in a homogeneous space (11,12). 
In 1963, Frish and Hammersley pointed out the drastic effects caused by 
the inhomogeneity of the medium, and suggested that under such condi-
tions the concept of diffusion should be replaced by that of “percolation” 
or “random percolation” (13). Random percolation means a random 
walk on a random lattice, which consists of either “open” or “closed” 
lattice sites to the motion of the random walker. The lattice sites open 
or close with a defined probability, so that an inhomogeneity occurs. The 
difference between diffusive and percolative motion depends on a criti-
cal value of a parameter, which represents a critical concentration of 
open lattice sites. This critical point is defined by the connectivity of the 
lattice, or defined by the effective range of a migration step (13).

Kopelman continued this theoretical work and conducted a pioneer-
ing study on dimension restriction of reaction space. He illustrated how 
the law of mass action breaks down in heterogeneous environments, and 
described the kinetics of such reactions as fractal reaction kinetics 
(14–18).

The first report by Kopelman, in 1980 (14), described simple analytical 
results for the special case of correlated random hops, and their Monte 
Carlo calculation results. They considered stochastic and correlated 
hopping on ordered and random lattices that contained a small fraction 

Diffusion  in continuous medium/Einstein&Smoluchowski

“Random percolation”

2D random walker/Duran

Biological experiments/Aon

Power Law/Savageau

Modified Fractal Kinetics/Schnell&Tuner

2D random walker vs Michelis-Menten/Berry
Stochastic simulation

Analytical solution

Generalized theory

Experiments with “excitons”

Effects of inhomogeneity for diffusion/Frish&Hammersley

Dimension Restricted Reaction Kinetics/ Kopelman

History of Dimension Restricted Reaction Kinetics

Figure 2. The history of DRRK.
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Table 1. Comparison of reactant diameters and volumes.
Molecule Diameter (nm)  Volume (nm3)

Mg2+ 0.346  0.0217
Naphthalene 0.2 ¥ 0.7 ¥ 1.2  0.168
EcoRV 4.96–6.39  136.56
DNA 2.0 ¥ 0.34 ¥ (bp)  4,654.7
E. coli 103 ¥ 3 ¥ 103 2.355 ¥ 109

of supertraps and a small number of “hoppers,” i.e., excitons (14). Their 
approach was based on a measurable quantity called “sensor registration 
probability.” This probability is related to time-dependent rate and dif-
fusion constants (14).

Next, they extended the theory to a more general one. They picked up 
pseudounimolecular and bimolecular reactions of random walkers on 
large clusters and presented their theory via simple, analytically soluble 
rate equations (15). The rate coefficient depends on time (K(t) � t−h),
where 1 ≥ h ≥ 0. h measures the degree of local heterogeneity; e.g., 
h = 0 means local homogeneity (15). They also reported actual parameter 
values measured by an experiment with naphthalene crystals (15), as an 
example of their theory. A more detailed analysis for exciton experi-
ments was given in their subsequent paper (16).

The main works were reviewed by Kopelman (17,18). Because his 
interest was focused mainly on energy transport through disordered 
systems, DRRK was applied to the reactions of microscale molecules in 
Kopelman’s work (Table 1) (14–18). Kopelman suggested that DRRK 
could be applied to the theoretical and experimental analysis of 
an enzymatic reaction of mesoscopic molecules. We tried to apply the 
analysis of an enzymatic reaction of mesoscopic molecules, and the 
results agreed with his suggestion. He showed the power of computer 
simulations by citing some results of simulations, rather than actual 
experiments (14–18).

2.2. Development from Basal Theory

Savageau studied fractal kinetics for enzymatic reactions (19–22). He 
adopted an alternative approach for modeling reaction dynamics in non-
homogeneous environments (19–22), and proposed that, rather than 
introducing a time dependence to the rate constants k of second- and 
higher-order reactions, instead the reactant concentrations should be 
raised to noninteger powers. Thus, his definition could be described as 
follows: the conventional rate law exhibits a characteristic reduction of 
the rate constant with time, and this is equivalent to a time-invariant rate 
law with an increased kinetic order under certain conditions. Savageau 
argues for the benefit of the power law approach based on its mathemati-
cal connection with fractal phenomena. One of the benefits is tractability 
because of the systematic structure of its formalisms. Another benefit
is accuracy because the formalism conforms to actual systems in 
Nature. Savageau’s approach has been proven only for homodimeric 
reactions, because the governing equations quickly become analytically 
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insoluble as the reaction dynamics become more complex. In more 
complex systems kinetics, orders must be determined experimentally.

Turner pointed out that power law equations produce sigmoid curves 
for one substrate bonding reaction with each enzyme, especially when 
the method is applied to the Michaelis–Menten reaction in a quasi–
steady state (19). There is no known experimental evidence showing 
sigmoid kinetics in such a case, so Schnell and Turner suggested that 
the fractal approach might be better for modeling the actual reaction 
processes. They presented the modified fractal kinetics (19,23), and 
proposed a modified form of fractal kinetics, whereby k1 has the time-
dependent form

 k1(t) = a (t + b)−h    (0 < (a,b) � R), (1)

where α and β are constant and to be set by fitting to the experimental 
data (19).

Vlad et al. showed multiple rate-determining steps for classic, non-
classic, and especially fractal kinetics (24). They extended a single rate-
determining step in a reaction mechanism to systems with multiple 
overall reactions for which the elementary reactions obey nonideal, or 
fractal, kinetics. Their extension requires four assumptions: i) that there 
exists no constraints which prevent the evolution toward equilibrium; ii) 
elementary reactions occur in pairs of forward and backward steps; iii) 
the kinetics of the elementary steps are either nonideal or fractal, and 
are compatible with equilibrium thermodynamics; and iv) the number of 
reaction routes is the same as the number of rate-determining steps. 
Their strategy is limited by these assumptions, so can be applied only to 
special cases, although their objective is a generalized approach.

The aforementioned works tried to extend the theory of kinetics, 
whereas some researchers have tried stochastic simulation for fractal-
like phenomena.

Duran et al. investigated the fractal Nature of the kinetics (25). 
They simulated aggregated particles visiting on a 2D square grid. This 
type of investigation has been extended by others researchers, who 
suggested that some of the physical properties depend on its initial 
conditions.

In one extension, Berry found that his stochastic simulation analysis 
of the two-dimensional case showed signs of fractal kinetics (26). He 
picked up an isolated Michaelis–Menten enzyme reaction case, and 
represented it by two-dimensional lattices with varying obstacle densities 
as models of biological membranes. His model indicated that for 
diffusion on low-dimensional media, the kinetics are of the fractal type. 
His simulation also indicated that the fractal-like properties are mainly 
additive. This area requires some new strategies to produce a definite
development.

Finally, we introduce a study that tried to evaluate the theory through 
actual biological experiments.

Aon et al. (27,28) applied the fractal approach with simulations for 
reactions of small metabolites, for cellular and organ morphology, for the 
geometry of protein surfaces and organization of macromolecules, and 
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for the spectral analyses of complex signals. Enzymatic kinetics were 
limited to theory in their study.

This extension is naturally limited to solving one special problem, 
because the objective of each study is to solve a specific biological 
problem.

In this chapter, we show the strategy of how to apply DRRK for such 
studies. We explain a pseudomonomolecular reaction case and a two-
reactant bimolecular reaction by extending their theory for a single-
reactant bimolecular reaction or a homodimeric reaction.

2.3. DRRK for Bimolecular Reactions

2.3.1. Pseudomonomolecular Reactions in Dimension-
Restricted Space
A reaction, which is called a pseudomonomolecular reaction, can be 
represented as follows:

A + C = C. (2)

This kind of reaction includes a simple transportation from one compart-
ment to the other, and diffusion phenomena, which are observed as 
molecules diffusing into a distinguishable area. The differential rate 
equation for these reactions can be represented as follows:

− [ ] = [ ]d A
dt

k A , (3)

where k is a time-independent constant.
The formulation of classic mass-action kinetics is universal. The 

functional form of the rate law does not depend on the dimension of 
the reaction space or on the mobility of species. Such factors affect 
only the value of the parameter k. However, the simple functional 
form of classic mass-action kinetics varies only with its parameter 
values, which are constants, and is naturally limited to describable 
phenomena.

By using DRRK in a descriptive manner, the differential rate equation 
can be written as follows:

− [ ] = ( )[ ]d A
dt

k t A . (4)

In this case, k(t) is time dependent. The time dependency was indicated 
by experimental studies on the reaction kinetics of excitons in molecular 
macroclusters (14–16). Explicitly, this time dependence, k(t) is replaced 
by

 k(t) = k1t−h with  0 ≤ h ≤ 1 (t ≥ 1), (5)

which is equivalent to

logk = −h log t + logk1. (6)

h is a measure of the dimensionality of the systems. h can be calculated 
from experimental data. First, you should calculate the value of K, which 
is defined as follows, from experimental data:
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K
A A

A t t
t t

t

= −
[ ] − [ ]
[ ] −( )

1 2

1 1 2

. (7)

From this you get the log–log plot of time and K (Figure 3). The slope 
of the approximated line is −h.

The special case of h = 0 is the classic case where unconstrained 
space is assumed. When a reaction environment is made homogeneous 
by vigorous stirring, h also equals 0. For diffusion-limited reactions 
that occur in fractal spaces, the theory gives h > 0 and time-dependent 
k(t). For dimensions lower than 2, one finds for elementary bimolecular 
reactions

h
ds= −1
2

. (8)

ds is a spectral dimension, which appears to be independent of 

d-dimensional Euclidean space (d
d

d
s

f

w

=
2

, df is a fractal dimension of 

the aggregate, dw is the fractal dimension of a random walk on the 
cluster substrate).

2.3.2. Two-Reactant Bimolecular Reactions in 
Dimension-Restricted Space

A two-reactant bimolecular reaction can be represented as follows:

A + B = P. (9)

log t

lo
g

K

h = 0

h = 0.33

time independent 
phenomena

time dependent 
phenomena

log K = -hlog t + logk1

t

[A
]

t1t2

[A]t1

[A]t2

K = -
[A]t1 - [A]t2

[A]t1
2(t1-t2)

A + A = 0 time course analysis

Figure 3. Log–log plot of rate constant k versus time t. Figure shows the case of 
A + A = 0 (1–reactant bimolecular) reaction. Rate constant K is calculated from 
time course analysis data. One may plot the log value of K versus log t. The slope 
of the plot of this value is −h. h = 0, time-independent reaction process; h = 0.33,
time-dependent reaction process (14–18).
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The differential rate equation in terms of A is written in the classic 
mass-action kinetics manner as follows:

− [ ] = [ ][ ]d A
dt

k A B . (10)

k is also a time-independent constant in this case.
For a two-reactant bimolecular reaction, the differential rate equation 

based on DRRK can be written as follows:

− [ ] = ( )[ ][ ]d A
dt

k t A B . (11)

The definition of k(t) and the calculation procedure of h from experi-
mental data are the same as in the case of pseudomonomolecular 
reactions.

On the other hand, the definition of h with ds for two-reactant bimo-
lecular reactions is as follows, instead of equation (8):

h
ds= −1
4

. (12)

When the reaction occurs under steady-state conditions, the Nature of
dimension-restricted reactions is expressed in the anomalous reaction 
order X because the “steady state” is time independent by definition. The 
steady-state reaction rate can be described as follows:

d A
dt

K A By z[ ] = [ ] [ ] . (13)

In the classic case, the overall reaction order X equals:

 X = y + z = 2, (14)

which is described by the sum of partial orders of A(y) and B(z). For the 
dimension-restricted reaction case,

X
d

h
s

= + = + −( )−1
4

1 1 1 . (15)

When the A + B reaction occurs in one-dimensional space, it follows 
that:

h =⎛
⎝⎜

⎞
⎠⎟

3
4

, (16)

which basically means that when the order is higher, the restriction is 
stronger.

To apply steady-state DRRK to an enzymatic reaction, we used the 
steady-state conditions defined by Briggs and Haldane (29) to analyze 
our experimental results. This approximation technique is the same as 
quasi-steady-state assumption (QSSA) (19). We can utilize the QSSA 
described by Segel (5) because, if the concentration of S is high enough, 
the free enzyme E will immediately combine with another molecule of 
S. Under these conditions, a steady state is achieved in which the enzyme 
is always saturated with its substrate. The details will be described later 
(Appendix A).
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The fractal kinetics approach is applicable not just for a reaction 
in fractal environments, but in many other nonclassic simulations 
(14–18).

3. Planning the Experiments for the Model

One significant problem is determining what kind of data is required for 
the precise construction of the model. For application of DRRK, the 
required data is a time-course fluctuation of reaction species. To apply 
some in vitro experiments for this modeling analysis, we could calculate 
the required values from the data of well-established procedures (see the
next section).

Recently, attractive techniques have been developed for observing 
reactions in living cells (30–33). These kinds of direct observations will 
promote analysis of molecular behaviors in the in vivo environment. One 
disadvantage of simple observation, however, is that it is limited, espe-
cially as a molecule moves in a complex anomalous environment like 
cytoplasm. It is not possible to determine the extent to which molecular 
movement is restricted by the environment without taking into account 
the reaction rate. To apply DRRK to these reactions and transports, 
and to determine the effect of each actual reaction space, some of 
the cases that could previously only be guessed at qualitatively can 
now be described quantitatively and precisely on the basis of experimen-
tal data.

3.1. Application for In Vitro Experimental Data

This section describes an example of how the DRRK method is applied 
to real data. The example is the case of EcoRV, which is analyzed in an 
in vitro manner, and it shows that it is easy to apply the method and solve 
this problem, which cannot be solved by a classic approach.

3.1.1. EcoRV
EcoRV is a restriction enzyme of E. coli, which has a mechanism for 
protecting bacteria from infection (34,35). The behavior of EcoRV is 
considered anomalous if the enzyme reaction occurs under completely 
ideal conditions. The behavior of EcoRV is anomalous in that the reac-
tion rate with a longer substrate is faster than with a shorter substrate. 
If the reaction proceeds under ideal conditions, as in a simple Newtonian 
fluid, which is the premise of classic mass-action models, the reaction 
rate depends only on the concentration of the reacting species. However, 
the actual reaction of EcoRV does not depend only on the concentration 
of the species; as a result, under some conditions, the reaction rate is 5 
times as fast when the substrate length is 20 times as long, even though 
the substrate concentrations are the same.

The behavior of EcoRV was defined with a stochastic model. Our sto-
chastic model revealed the behavior of this enzyme to be dimension 
restricted. We then decided to apply DRRK to this reaction as a test case.

We try to represent this phenomenon by DRRK modeling, which 
cannot be represented by classic modeling methods.
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3.1.2. Classic Mass-Action Model Cannot Represent the EcoRV 
Reaction Process
We constructed an ODE-based model for the EcoRV reaction process. 
We originally constructed a classic mass-action model that could be 
compared with a model that included DRRK. This model is shown sche-
matically in Figure 4A. The characteristic feature of this model is in the 
“association step,” in which the enzyme associates with its substrate 
DNA and searches for its target sequence.
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Figure 4. Kinetic model for EcoRV movement. (A) The kinetic model for the 
EcoRV enzymatic reaction consists of a targeting process, a catalytic process, and 
a dissociation process. The targeting process includes both of the enzymes that 
associate with intact DNA to determine their target sequences. This model was 
described by CellDesigner (42) and analyzed with MATLAB. (B) The case of 
y = 1. Time course simulation of concentrations of cleaved 26- and 958-bp DNA 
(top and middle panels) and correlation between ka (x axis) and cleavage reac-
tion rate ratio, 958 bp/26 bp (y axis) (bottom panel). (c–e) The case of y = 2(C),
y = 3(D), and y = 4(E). Time course simulation of concentrations of cleaved 
26- and 958-bp DNA (top and middle panels) and correlation between the 
parameter ka (x axis) and the cleavage reaction rate ratio 958 bp/26 bp (y axis)
(bottom panel) Filled circles indicated the appropriate ka value to reconstruct 
the reaction rate ratio (43–45). The actual reaction order is not a limited integer. 
It is a real number.
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In the general fractal kinetics, dimension-restricted space for reaction 
has no limitation other than its dimension, which means that low-
dimensional reaction space is infinitely sequential space, like infinitely
sequential linear space. On the other hand, substrate DNA, which pro-
vides a pseudorestricted space for an enzyme, has the limitation that 
DNA has its length. In particular, the pseudorestricted space concretely 
affects the following elements. The ease with which an enzyme finds its 
target sequence depends on the length of DNA. On the other hand, it is 
also considered that the ease with which an enzyme can associate its 
substrates depends not only on the concentration of DNA but also on 
the length of DNA. Taking into account the effect of DNA length, the 
flux of the association step can be represented as follows:

 ka × k1([Intact DNA] × length)y × [EcoRV]z. (17)

Parameter ka represents how likely the enzyme is to associate with DNA, 
parameter kl represents how likely the enzyme is to find its target 
sequence, “length” is the length of substrate DNA (base pairs), and 
[Intact DNA] and [EcoRV] represent the concentrations of the reaction 
species.

In the expression for the classic mass-action model, both the substrate 
order y and the enzyme order z are defined as 1. In this model, all of the 
steps except the association step are represented by the classic mass-
action model to analyze pure DRRK effects for the result. The total 
model equations are indicated in Table 2, and the parameters are indi-
cated in Table 3.

Table 2. Differential equations for EcoRV model

d
dt

k k Eco k
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By this analysis, the classic mass-action model cannot reconstruct the 
different reaction rate with different-length substrates (Figure 4B), as 
suggested by other studies (6,8). You may also find that parameter 
searching could not solve the problem (Figure 4B).

The association step is the dimension-restriction step in this reaction 
process, so we next applied DRRK to the association step of our model 
and analyzed the effect on the results.

3.1.3. DRRK Successfully Represents the Reaction Process
To reconstruct the different reaction rates with different-length sub-
strates of EcoRV, we applied DRRK to our model. This DRRK-inclusive 
model successfully represented the differences in reaction rate with dif-
ferent-length substrates (Figure 4C). We applied DRRK in the associa-
tion step in this case. The other part of this model was similar to the 
classic mass-action model. In this case, we defined the sum of substrate 
order y and enzyme order z as equal to 5 (18). The appropriate parame-
ter was searched for ka to reconstruct the different reaction rates with 
different length substrates. Simulation results with y = 3 and z = 2 are 
shown in Figure 4C. Actually, each value of y and z is not limited in 
integer. The right panel of Figure 4C shows that we found an appropriate 
parameter value to reconstruct the different reaction rates with differ-
ent-length substrates (Figure 4C, right panel).

By using DRRK, we succeeded in reconstructing a phenomenon that 
could not be reconstructed by a classic mass-action model. We thus 
accomplished the first task of the numerical model analysis, which is 
reconstructing the target phenomenon by modeling.

This model can be evaluated experimentally. We estimated the reaction 
order by means of the experiments discussed in the following sections.

As previously described, the DRRK description expresses the dimen-
sion restriction of reaction space by the orders of the species concentra-
tion. The orders of species concentration are real numbers; they are not 
limited to integers. The answers exist in the ranges of both y > 1 and y +
z = 5. It is difficult to define these more specifically by model analysis 
alone, but a benefit of this model is that the unclear points can be quan-
titatively defined by experiments. Therefore, as our next step, we intro-
duce experiments to define the reaction order.

3.1.4. Reaction Order Estimation by Experimental Results
To estimate reaction orders, the required data is that the detailed sequen-
tial fluctuation of species concentrations analyzed by a time-course 
experiment (Figure 5). It allows estimating the reaction order directly 

Table 3. Kinetic model rate constants.
ka Parameter for association reaction rate

kl 1/(length of substrate DNA)
Length Each substrate DNA length
kd1 1.0 ¥ 10-5

Kd2 1.0
kc 4.16
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and calculated the rate constant (K) for comparison with the model 
parameter (ka) to determine the reaction order in more detail. For the 
reaction order estimation, we used the data that fulfilled the steady-state 
conditions (Figure 5B, blue line; Appendix A). In this example, the data 
also met the condition that the substrate concentration was greater than 
the enzyme concentration ([S] >> [E]). After time 0, this reaction fulfils
the steady-state condition defined by Briggs and Haldane in 1925 (29) 
(Appendix A) in this range. The reaction order was estimated with these 
data by plotting the integral value of the reaction rate for intermediate 
species versus time in each from first to fourth order. If this plot is linear 
and the intercept value is near the estimated value, the reaction order is 
suggested as the order. The results of these reaction order estimates are 
shown (Figure 5C–F). From the simulation results, it is not appropriate 
to consider this reaction to be a first-order reaction. On the other hand, 
neither the linearity nor the intercept value offered any evidence to 
determine whether the reaction is second or third order. For the fourth-
order analysis, the intercept value was not appropriate, so this reaction 
may not be fourth order. These results indicated this reaction is second 
to third order. We next estimated the reaction order to be nearer to 
second or third order by the reaction rate constants from the experimen-
tal results.
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Figure 5. Kinetic order estimation of EcoRV reaction. (A) Map of linear pBR322 
and photograph of 5% Acryl Amide electrophoretic gel digested with pBR322 
for 8 h under 50 mA. The photo was taken after the gel was stained with 100 μg/ml
of ethidium bromide in UV illuminator. (B) Time-course result of EcoRV–linear
pBR322 reaction: x axis, time; y axis, concentration of catalyzed DNA; blue line, 
results with excess substrate; red line, results with excess enzyme. Results with 
excess substrate were used for calculation of reaction orders. Approximations of 
first-order (C), second-order (D), third-order (E), and fourth-order (F) reactions 
with time course results (43).
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We then estimated each case of ka in our model with the experimental 
rate constant K (Table 4). The value of K for each reaction order 
was calculated with our model (Table 5). Values of K and ka were
compared with each other for each reaction order. Tables 4 and 5 
show that, in the case of the reaction orders 2 and 4, the simulated 
and experimental ka values differ by a factor of 103 to 104, and the 
K values differ by a factor of 1/30 to 2. For the ka and K values of the 
third-order reaction, simulation and experiment indicated the same 
value, or, at the most, a 20% difference. These results showed the reaction 
to be nearly third order. These experimental results were in agreement 
with the model analysis and revealed new findings that could not be 
clarified by either modeling or experiments. We considered whether 
these estimates were compatible with the premises of the basic theory 
behind our model, considering the mean of the reaction order in the 
DRRK model.

3.1.5. Back to the Simulation Results to Check the Compatibility 
with the Experimental Results
Our model was constructed based on the assumption that the movement 
of the enzyme is restricted in low-dimension space during the association 
step. Our experiments indicated that the substrate order y is near 3, 
which means that the enzyme order z is near 2. However, our simulation 
had already indicated that the reaction order y could not be 1 to recon-
struct the phenomena of different reaction rates with different-length 
substrates; in other words, 1 < y < 5 and 0 < z < 4. These results indicate 
that the results from experimental results are compatible with the results 
of our simulation. At the same time, the actual reaction process occurs 
in one- to two-dimensional restricted reaction spaces, as expected and 
defined as the premise of our model. Hence, our model is appropriate 
for representing of this reaction.

Table 4. Estimated ka value for each reaction 
order with experimental conditions.
y ka K

2 3.0 ¥ 10-4 0.36
3 2.1 ¥ 10-8 0.36
4 9.0 ¥ 10-13 0.36

Table 5. Estimated K value for each reaction 
order with the DRRK model.
y ka K

2 7.5 ¥ 10-7 0.012
3 6.5 ¥ 10-8 0.469
4 3.0 ¥ 10-9 0.644
*1 For aqueous buffers h = ×10-3 Pa  s.
*2 kB = 1.380658 × 10-23 J/K: Boltzmann constant, gas con- 
stant R (= 8.314510 J/mol·K) divided by Avogadro’s number 
(NA = 6.02 × 1023).
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Thus, we were able to achieve two things that had not been 
done together before this DRRK study: to represent a reaction under 
dimension-restricted space by a numerical model and to experimentally 
evaluate the numerical model.

3.2. Application for In Vivo Experimental Data

The conditions for the applying DRRK are a simple process, ATP-
independent diffusion, and restricted reaction space. These conditions 
are applicable for many cases of intracellular diffusion of molecules.

For example, transportation of the Stat1 transcriptional factor from 
the cell membrane to the nuclei fulfills these conditions (33). As stated 
above, this transportation process is ATP-independent. At the same time, 
the diffusion of active protein kinase C (PKC) stacked onto a cell mem-
brane is slower than Stat1 transportation through the cytoplasm. This 
phenomenon cannot be explained if one assumes that the cytoplasm is 
a free three-dimensional space, that is, without taking into account the 
crowding of the cytoplasm. Observed phenomena have suggested that 
the environment of the cytoplasm restricts molecular movement more 
than does two-dimensional space, such as the cell membrane. The DRRK 
method permits the diffusion dimension to be estimated by the rate of 
movement or reaction. Information about the dimension of diffusion 
may be useful for the estimation of diffusion constant in a PDE model 
analysis.

Many other phenomena fulfill the conditions for applying of 
DRRK (36–38). To develop an in vivo-oriented modeling, it will be 
important to take into account these experimental data. We suggest 
a candidate to which the DRRK technique could be applied, that 
is, the data of fluorescence recovery after photobleaching (FRAP) 
analysis.

To date, many of the studies that analyzed the movement of target 
molecules by FRAP also calculated the diffusion coefficient of the 
molecular movement (31,32). However, sometimes the predicted trans-
portation time, which is calculated from the diffusion coefficient, was not 
compatible with their experimental data. It is conjectured that the incor-
rectness arises from the assumption of the classic method of calculating 
diffusion coefficient (39). The original calculation strategy is only valid 
when the fluorescence recovery arises from 2D diffusion. However, there 
is no guarantee that the diffusion dimension is 2D, except for the mole-
cules attached to the membrane.

It has been suggested that DRRK can provide the diffusion 
dimension by calculating ds from the FRAP data modified for this 
kind of data analysis. Experimental results suggested that the curve 
of fluorescence recovery of anomalous (or complex) diffusion has 
the features of the reaction process following the fractal kinetics (40) 
(Figure 6).

After deciding the diffusion dimension by experimental data and 
constructing a model that is compatible with it, we could represent the 
movement more precisely.
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Figure 6. DRRK application for FRAP data. The recovery curve of the diffusion 
process in free 3D space is suggested as a time-independent process. Some inho-
mogeneous, complex diffusion processes were observed, and these kinds of 
diffusion processes are suggested as time-dependent phenomena. We may distin-
guish these two kinds of processes definitely, and moreover, calculate their 
concrete reaction order by applying DRRK (14–18,40).

4. Calculation Cost: Another Benefit of the DRRK Model

The calculation costs of in vivo–oriented modeling can be huge because 
of the highly complex network structures. This tendency is shown more 
clearly when we try to use stochastic and PDE modeling.

The DRRK model is an ODE-based model, and the calculation costs 
of this kind of model are lower than those of stochastic and PDE models. 
However, classic ODE-based models cannot represent dimension-
restricted reactions, which are suggested to be common in in vivo
environments. The DRRK model overcomes the problem of the classic 
model in this regard, and application of the DRRK model to large-scale 
networks is expected to better reflect the reaction environment in the 
model.

5. Concluding Remarks

The first step of model analysis is reconstruction of experimentally 
observed phenomena. The next step is evaluating the model by means 
of other experiments.

Classic ODE-based models cannot represent dimension-restricted 
reactions. The probabilities in the stochastic model are difficult to define
using experiments. Diffusion constants in the PDE model, which are 
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calculated after researchers have set up the diffusion dimension, do not 
work when evaluating the model (31,32).

DRRK successfully represents such kinds of phenomena and can be 
evaluated quantitatively with experimental data.

DRRK could be useful for the precise analysis to know the dynamics 
of intracellular molecules, not only in the DRRK model itself. The reac-
tion rate constants could be useful for evaluating the model by experi-
ments using models other than DRRK. DRRK will be particularly 
valuable for PDE modeling after the dimensions of the diffusion have 
been defined in some other way (41) (Appendix B).

It is difficult to analyze the dynamic character of a network that only 
has information about the interaction of each node; sometimes the nodes 
are proteins. It is also difficult to know when and in which order the 
actual reaction species work in the cell from the information of the rela-
tive expression data of messenger RNA. The basic requirements needed 
to describe the dynamics of a reaction network are the concrete data of 
“when,” “which kind of reaction” occurs, and “how much” of the reac-
tants themselves.
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Appendix A: Steady-State Conditions and Reaction 
Order Estimation

For the steady-state conditions for the calculation of the powers, assump-
tion 1 is that enzyme concentration is a constant, and assumption 2 is 
that k2 is sufficiently larger than k1.

In this reaction scheme,

S E SE P
k

k k

[ ] + [ ]↔[ ]→[ ]
−1

1 2

, (A1)

where [S] is the concentration of substrate, [E] is the concentration of 
enzyme, [SE] is the concentration of intermediate reactant, and [P] is the 
concentration of product.
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By taking these assumptions into account, the time-dependent fluctua-
tion of the intermediate reactant, SE, can be treated the same as the 
fluctuation of the product. Then, for the case of first-order reaction,

d SE
dt

d P
dt

d S
dt

[ ] = [ ] = − [ ] (A2)

This equation is integrated, and the integral value is plotted against 
time. The integral value is

− [ ]
[ ]

= −
ln

,
S

S
kt

0

(A3)

where [S]0 is the concentration of S at time 0.
When the reaction is a first-order reaction, the plot of this value against 

time will be linear and its y intercept will be 0.
For the case of an nth-order reaction,

− [ ] = [ ]d S
dt

k S n , (A4)

and the integral value is given by

1
1

1 1
11

0
1n S S

kt nn n−( )
×

[ ]
−

[ ]
⎛
⎝⎜

⎞
⎠⎟

= ≠( )− − (A5)

When the reaction is an nth-order reaction, the plot of this value 
against time will be linear, and the intercept will be

1

0
1S n[ ] − . (A6)

Appendix B: The Relation Between Rate Constant and 
Diffusion Coefficient

Suppose a protein, which has a diameter d1, moves through buffer by 
Brownian motion (41), and that a target molecule of diameter d2 is
present at concentration c. When c is in units of number of molecules 
per volume, then the volume per target is

V
c

=
1

In this environment, we can expect the two species to be at a distance 
of roughly

r
c

=
1
1 3 .

After a time of r2/D, where D is a diffusion coefficient, a species will 
bind a nearby target or it will have diffused away from one target. In the 
latter case, the binding probability will be pushed up by each r/d2 time.
This gives a total association time of

r
d

r
D

r
Dd Dd c2

2 3

2 2

1
× = = .
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The association rate is the inverse of the total association time, Dd2c.
The rate constants per unit concentration is K = αDd2 (α is a constant 
for each case). K can be represented based on Smoluchowski’s calcula-
tion (3),

k Dd
k Td

d
B= =4

4
3

2
2

1

π
η

.

This rate constant can be estimated as k ≈ 108/M/s. This value indicates 
that a binary reaction cannot occur at a higher rate than this if the reac-
tants are brought together by unguided 3D diffusion.

The above estimations are for a 3D case. Now let us suppose the case 
that the diffusion dimension is limited. When a molecule diffuses in a 1D 
manner and the diffusion distance is called l, then

V l
c

r l= = ≤
1

and .

This shows that the total association time can be represented by the 
one-dimensional case of diffusion coefficient D,

r
d

l
D

l
Dd2

2

2

× ≤ .

The association rate is larger than the inverse of the total association 
time, Dd2c2. c is a positive real number, and, naturally, the association 
rate in 1D environment is faster than in a 3D environment.
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Mechanisms Generating 
Ultrasensitivity, Bistability, and 
Oscillations in Signal Transduction
Nils Blüthgen, Stefan Legewie, Hanspeter Herzel, and Boris Kholodenko

Summary

Stimulus-response curves of signal transduction cascades are often non-
linear; take, for example, sigmoidal curves. Such sigmoidal curves are fre-
quently termed ultrasensitive, as small alterations in the stimulus can elicit 
large changes in the response. This chapter shall review the importance 
of ultrasensitivity in signal transduction, with a focus on the activation of 
the mitogen-activated protein kinase (MAPK) cascade. The major mech-
anisms that generate ultrasensitivity (Figure 1) are introduced. In particu-
lar, zero-order kinetics and multisite phosphorylation are discussed.

Ultrasensitive signaling cascades equipped with positive or negative 
feedback loops may exhibit complex dynamic behavior. The large body 
of theory for effects of feedbacks shall be reviewed in this chapter. It is 
discussed that bistability can emerge from ultrasensitivity in conjunction 
with positive feedback, whereas adaptation, oscillations, and, surprisingly, 
highly linear response can arise with negative feedback.

Key Words: Mathematical modeling; control theory; dynamics; bifur-
cation analysis; signal transduction cascades; zero-order ultrasensitivity; 
mitogen-activated protein kinase (MAPK) cascade.

1. Introduction

Intracellular signal processing in higher eukaryotes is carried out by sig-
naling networks composed of enzymes that control each other’s activities 
by covalent modification. Signals at the cellular membrane ripple through 
these signaling networks by covalent modification events to reach various 
locations in the cell and, ultimately, cause cellular responses. The bio-
chemical building blocks of these networks are so-called covalent modifi -
cation cycles, where couples of opposing enzymes (e.g., a kinase and a 
phosphatase) activate and deactivate a target substrate by covalently 
modifying it at a single or at multiple sites (Figure 2).

The steady-state stimulus-response curves of covalent modification
cycles often display strong sigmoidality in vivo, as shown, for example, 
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Figure 1. Methods to quantify ultrasensitivity. (A) The Hill coefficient is often 
estimated by the stimuli needed for getting 10% and 90% of the maximal activa-
tion, C0.1 and C0.9, respectively. (B) In contrast, response coefficients are defined
locally, i.e., for a given stimulus, and evaluate the relative change in response

upon a relative change in stimulus R
S
R

R
SS

R =( )Δ
Δ

.

T

M

T

T T

D

D

T

T

P

PP

M

A B

M

D

v2

v1

Figure 2. Sketch of a simple covalent modification cycle. (A) The modifier
protein M catalyzes the modification of the target T, and the demodifying protein 
D removes the modification from TP. The reaction rates are called v1 and v2.
(B) A mechanistic scheme of the covalent modification cycle, which takes enzyme 
sequestration into account. The enzymes M and D bind their targets T and TP

reversibly, and release their product irreversibly (irreversible Michaelis–Menten 
mechanism).

for the activation of Sic1 (1), a cyclin-dependent kinase inhibitor that 
controls entry to S phase of the cell cycle. Sigmoidality of the stimulus-
response curves has been termed ultrasensitivity, to capture the highly 
sensitive nature of those systems to changes in signals near a threshold 
stimulus. Additionally, ultrasensitive behavior was reported in various 
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in vitro experiments, e.g., in the phosphorylation of isocitrate dehydrog-
enase (2), in muscle glycolysis (3), in calmodulin-dependent protein 
kinase II (CaMKII) activation (4), and in the activation of the MAPK 
cascade (5). Subthreshold stimuli are damped, whereas superthreshold 
stimuli are transmitted, which allows for virtually binary decisions (6). 
Ultra sensitivity can help to filter out noise (7) or can delay responses (8). 
Mechanisms that lead to ultrasensitive stimulus-response curves include 
cooperativity, multisite phosphorylation, feed-forward loops, and enzymes 
operating under saturation. The latter mechanism has been termed zero-
order ultrasensitivity because a necessary condition is that the opposing 
enzymes of a covalent modification cycle display zero-order kinetics. 
Moreover, oscillations can be observed if an ultrasensitive cascade pos-
sesses a negative feedback (9). Bistability (hysteresis) can occur if such 
an ultrasensitive cascade is equipped with a positive feedback, as has 
recently been observed in eukaryotic signaling pathways (10). Surpris-
ingly, ultrasensitivity can also lead to highly linear signal transduction in 
the presence of high load, such as translocation to the nucleus (11).

This chapter shall review the theoretical concepts that have been 
brought up to understand the appearance of ultrasensitivity, bistability, 
and oscillations. It introduces methods to quantify ultrasensitivity, 
explains the means by which ultrasensitivity is generated, and demon-
strates how bistability and oscillations arise because of ultrasensitivity 
and feedback loops.

2. Quantification of Ultrasensitivity

2.1. Hill Coefficient

The first characterization of ultrasensitivity was introduced by Hill as an 
empirical description of the cooperative binding of oxygen to hemoglo-
bin (12). Hill found that binding was well described by the following 
relationship, which is now known as the Hill equation:

y
x

K x

h

h h=
+0 5.

, (1)

where y is the bound fraction of oxygen, x is the oxygen pressure, K0.5 is
the oxygen pressure where half of the binding sites are occupied, and h
is the Hill coefficient.1 Enzymes exhibiting positive cooperativity, such 
as hemoglobin, display ultrasensitivity; that is, their Hill coefficients
exceed unity. For example, the Hill coefficient of hemoglobin equals 2.8, 
and in general, a Hill coefficient of 4 is often thought to be an upper limit 
for cooperative enzymes (13).

The Hill coefficient is not commonly estimated by fitting the formula 
to the data, but it is often calculated from the cooperativity index, which 
is defined as (14):

1 Originally, Hill used the constant differently: y
Kx

Kx

n

n=
+

100
1

, with y being in 
per cent. Thus K = 1/(K0.5)1/h.
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R
C
C

a = 0 9

0 1

.

.

, (2)

where C0.9 is the stimulus-value generating 90% of the response, and C0.1

is the value for 10% of the maximum response. To get the relationship 
between Ra and the Hill coefficient, h, the following equations need to 
be solved:

C K C Kh h
0 9

1
0 5 0 1 0 5

19 9. . . . .= =, (3)

Solving for h yields:

R
C
C

h
C C

a
h= = → =

( )
0 9

0 1

1

0 9 0 1

81
81.

. . .

log
log

. (4)

If the Hill coefficient is 1, an 81-fold increase of the stimulus is needed 
to increase activation from 10% to 90%. For Hill coefficients higher than 
1, the increase of the stimulus needed is smaller and the Hill curve gets 
sigmoidal.

2.2. Metabolic Control Analysis

Whereas the Hill coefficient quantifies the ultrasensitivity of a stimulus-
response curve globally, i.e., over a range of stimuli, there are methods 
to evaluate ultrasensitivity locally, i.e., for small changes around a certain 
stimulus. The most commonly used method is metabolic control analysis 
(MCA) (15–17). Although originally developed to study the control of 
metabolism, it has been successfully extended to intracellular signal 
transduction (18–20). MCA is a mathematical framework that connects 
control properties of the system, e.g., the catalytic activity of an enzyme 
to a flux or a concentration.

The response of the entire system upon small perturbations in param-
eters (such as rate constants or total concentrations) is described by 
so-called response coefficients and defined by the following:

R
p

S
S
pp

S j

i

i

j
j

i =
[ ]

[ ]d
d

. (5)

Here, RSi
Pj

equals the relative change in the steady-state concentration [Si]
brought about by an infinitesimal relative change in the parameter pj.
Response coefficients higher than 1 correspond to (locally) ultrasensitive 
systems, which exhibit relative amplification, whereas R < 1 implies rela-
tive damping and a subsensitive response.

Local kinetic details are captured by elasticities and are defined by the 
following:

εx
v i

j

j

i
i

j x
v

v

x
= [ ] ∂

∂[ ]
.   (6)

Elasticities evaluate the relative change in a reaction velocity as a 
result of an infinitesimal relative change in one of its substrate, product, 
or effector concentrations (e.g., [xi]). To determine this coefficient, the 
enzyme is conceptually considered in isolation from the system, and only 
a single metabolite is perturbed. The elasticities of an enzyme Ei, after 
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irreversible Michaelis–Menten kinetics with the Michaelis–Menten con-
stant KM, are as follows:

εE
v

i

j = 1, (7)

in respect to the enzyme concentration, and

εS
v M

M

j K
S K

=
[ ] +

, (8)

for the substrate S.
MCA was designed for the description of steady-state behavior and it 

is used accordingly in this chapter. However, it was also extended toward 
transient phenomena and oscillations (19,21,22).

For a Hill function (Eq. 1), the response coefficient reads:

R h
x

K x
x
y

h

h h= −
+

⎛
⎝⎜

⎞
⎠⎟

1 .
0.5

(9)

Thus, the response coefficient Ry
x equals the Hill coefficient h for low 

stimulation, but decreases to 0 for higher stimuli. Based on this equation, 
Legewie et al. (23) proposed another method for the quantitative analy-
sis of ultrasensitive systems, which also applies to responses that strongly 
deviate from the Hill equation.

3. Mechanisms

3.1. Zero-Order Ultrasensitivity

Reversible covalent modification of proteins appears to be a universal 
regulatory motif in eukaryotic cells, controlling nearly all aspects of 
cellular life (24). In a series of articles at the beginning of the 1980s, 
Goldbeter and Koshland have shown that a simple cycle of two opposing 
enzymes that covalently modify a target protein (Figure 2) can result in 
highly ultrasensitive responses (14,25). They named this effect zero-order 
ultrasensitivity because ultrasensitivity in this simple system requires 
strong saturation of the modifying enzymes, which implies that the reac-
tion velocity is nearly independent of the substrate concentration (zero-
order kinetics). The dynamics of the covalently modified form can be 
described by one ordinary differential equation for the activated target 
protein (Figure 2):

d

d
,

T

t
v v

P⎡⎣ ⎤⎦ = −1 2 (10)

where the reaction rates v1 and v2 may follow Michaelis–Menten 
kinetics:

with and .1
max,1

M1
2

max,2

2

v
V M T

T K
v

V D T

T K

P

P
M

= [ ][ ]
[ ] +

=
[ ]⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ +
(11)

Here, [T] and [TP] are the concentrations of the inactive and active 
form of the substrate, respectively, [M] and [D] are the concentrations 
of the activating and deactivating enzymes. If the enzyme–substrate com-
plexes are negligible, the mass conservation reads
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 [T] + [TP] = [Ttot]. (12)

Thus, one can express [T] in terms of the total substrate and the active 
form by [T] = [Ttot] − [TP]. In this case, the equation for v1 can be written 
as follows:

v
V M T T

T T K
tot

P

tot
P

M
1

1

=
[ ] [ ] − ⎡⎣ ⎤⎦( )

[ ] − ⎡⎣ ⎤⎦( ) +
max,1

. (13)

The system is in a steady state if the forward reaction rate v1 equals
the backward reaction rate v2. This condition can be evaluated graphi-
cally, as shown in Figure 3, A and C, where plots of v1 and v2 as a function 
of [TP] are displayed for two different values of substrate concentrations. 
In Figure 3A, the substrate concentration is low compared to the KM

values of kinase and phosphatase, whereas the opposite situation is 
shown in Figure 3C. Consequently, the reaction rates show no saturation 
in Figure 3A, whereas they are saturated in Figure 3C. The reaction rate 
v1 depends linearly on the stimulus, i.e., the modifier concentration [M].
These plots illustrate how a slight change in the stimulus [M] can either 
result in a moderate change in response (Figure 3B) or in a drastic 
change (Figure 3D).

In terms of a response coefficient, zero-order ultrasensitivity can be 
expressed by (11):
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Figure 3. The principle of the Goldbeter–Koshland switch. (A and C) Solid lines 
represent the modification rate for two different stimuli; dashed lines show the 
demodification rate. (B and D) Stimulus-response curves. If the enzymes operate 
under first-order kinetics (A), the stimulus-response curve looks like a Michaelis–
Menten curve (B), as opposed to enzymes, which are saturated by the substrate 
(C), where one can observe ultrasensitivity (D).

CIT_Ch15.indd 287CIT_Ch15.indd   287 5/22/2007 3:46:36 PM5/22/2007   3:46:36 PM



288 Blüthgen et al.

R
T

T T
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T
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T
v PT

P
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= [ ]
[ ] + ⎡⎣ ⎤⎦ε ε2 1

. (14)

One may consider two cases: the enzymes are not saturated with the 
substrate (i.e., the elasticities ε 

T
V1 and ε

T
V

P
2 equal 1), and the case when

they are saturated (i.e., ε 
T
V1 [TP] 1 and ε

T
V

P
2 [T] 1), compare equation 8. 

In the first case, the response coefficient equals R
T

T TM
T

T

V v PT

P

P T

=
[ ]

[ ] + [ ]ε ε2 1
,

implying that it cannot exceed unity. In contrast, if the enzymes are 
saturated, the denominator becomes small; therefore, the response 
coefficient may exceed 1, and the stimulus s-response curve may become 
ultrasensitive.

This analysis is based on the assumption that the activating and deac-
tivating enzymes are low, and consequently, the enzyme-substrate 
complex is negligible. In signal transduction cascades, however, the con-
centrations of enzymes and substrates are often comparable. This may 
increase the amount of substrate bound to the enzymes (species MT and 
DT in Figure 2B), which is thereby sequestered. A theoretical analysis 
of a covalent modification cycle that includes the effects of high enzyme 
concentrations can be found in (26). It shows that the response coeffi -
cient modifies to:

R
T

T T TM T D
M
T

T
V

T
v

T
V

T
vT

*

** *
= [ ]

[ ] + [ ] + [ ] + [ ]( )ε ε ε ε*

.
2 1 2 1

(15)

Furthermore, the paper shows that zero-order ultrasensitivity disap-
pears if the concentration of the enzymes is comparable to that of the 
substrate. Thus, there is doubt about the physiological relevance of zero-
order ultrasensitivity in signal transduction.

3.2. Multiple Modification Sites

A large fraction of proteins is subject to reversible covalent modification
at multiple sites. As early as 1976, where only the phosphorylation of five
proteins had been studied in detail, it was realized that three of them 
possess multiple phosphorylation sites (24). In many cases, multisite 
phosphorylation is catalyzed by several kinases, each modifying distinct 
sites, thereby allowing the integration of different information sources 
(27). In case that substrate activation requires modification at two sites, 
the substrate may act as a coincidence detector (AND-gate) because 
activation requires the presence of two kinases. Additionally, modularity 
can arise if the substrate performs different cellular functions depending 
on which sites are modified.

In contrast, several proteins, such as the epidermal growth factor 
receptor (EGFR), and the kinases Erk and Mek have multiple phos-
phorylation sites that are phosphorylated by the same kinase. It has been 
widely discussed that the stimulus-response curve of a protein becomes 
ultrasensitive if activation requires multisite phosphorylation by the 
same protein (1,28–30). In the following sections, this idea is sketched by 
a simple model for multisite phosphorylation. To distinguish the effects 
of multisite phosphorylation and zero-order ultrasensitivity, enzyme 
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saturation and substrate sequestration will be neglected. For simplicity, 
it is further assumed that the reaction constants for all phosphorylation 
sites are equal; i.e., the model does not include cooperativity, which is 
known to enhance ultrasensitivity. Also, it is assumed that the modifica-
tion sites are modified in a sequential as opposed to a random manner, 
as, for example, shown for MAPK activation and deactivation by Mek 
and MKP3, respectively (31,32). A reaction scheme for such a system is 
depicted in Figure 4. The reaction rate of the reaction Ti−1 → Ti is given 
by v1

i−1 = k1[M][Ti−1] and of the reaction Ti → Ti−1 by v2
i−1 = k2[D][Ti]. By 

applying steady-state conditions, one can express the amount of i-fold–
modified protein by,
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Figure 4. Sketch of a multisite modification cycle, where the sites are modified by 
the enzyme M and demodified by the enzyme D. The index of the target protein 
T indicates the number of modified sites. This scheme implies that the modi-
fication sites are processed in a sequential manner, e.g., site 1 is the first to be 
modified, then site 2 is modified, etc. It is assumed in the calculations that all steps 
have equal rate constants k1 for modification and k2 for demodification.
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Assuming that only the full, n-fold–modified substrate is active, the 
normalized steady-state activity is given by
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resulting in a response coefficient of
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For weak stimulation, the response coefficient equals approximately 
the number of modification sites, n. As the stimulus-response curve of 
multisite modification deviates significantly from a Hill curve, the Hill 
coefficient according to equation 6 is lower than the number of modifica-
tion sites, e.g., the Hill coefficient of double phosphorylation is 1.38 (33). 
A more detailed study by Kholodenko (34) on double-phosphorylation 
also includes saturation effects and yields a response coefficient of
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The response coefficient is approximately 2 for low stimulation and 
linear kinetics, but may exceed 2 if the enzymes are saturated. However, 
as the derivation by Kholodenko (9) did not take high enzyme concen-
trations into account, it applies only as long as the enzyme concentrations 
are negligible when compared to the substrate concentration, or the KM

values are rather high.

3.3. Other Mechanisms

The earliest discovered mechanism for an ultrasensitive response was 
cooperative binding, first found in 1904 for the binding of oxygen to 
hemoglobin (35). Each hemoglobin molecule possesses four binding sites 
for oxygen. The affinity of a site for oxygen depends on the occupancy 
of the other binding sites, and increases when these sites are already 
bound to oxygen. The concentration of oxygen bound as a function 
of oxygen pressure is well described by a Hill function with coefficient
2.8 (12).

Stoichiometric inhibition and ultrasensitization caused by substrate 
sequestration are two mechanisms that can give rise to ultrasensitivity 
by sequestering the target. Both require high affinity binding of the 
target by the stoichiometric inhibitor (36) or by a phosphatase (37), 
respectively. The stoichiometric inhibitor or the phosphatase binds the 
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target molecule and prevents it from being active until the target con-
centration significantly exceeds the phosphatase or the inhibitor.

Another mechanism that generates ultrasensitivity is molecular crowd-
ing (38,39). This mechanism is based on the finite size of the molecules 
and needs very high concentrations of the protagonists. Thus, it is an 
unlikely effect in signal transduction, where most molecules are present 
only in low or medium concentrations.

3.4. Sensitivity Amplification by a Cascade

Covalent modification cycles are usually organized in linear signaling 
cascades. Brown et al. (40) pointed out that the response coefficient of 
a linear signal-transduction cascade, Rn

1, is simply the product of the 
individual response coefficients of each kinase with respect to its upstream 
kinase ri

i+1:

R rn
i
i

i

n

1
1

1

1

= +

=

−

∏ . (20)

This relation can be derived by applying the chain rule for derivatives. 
Assuming a three-level cascade, where each level responds like a Hill 
function
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the response coefficient of the terminal kinase K3 upon a stimulus K0

reads:
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where fi = Ki /Ki,tot is the activated fraction of kinase i. Thus, such cascades 
can exhibit a sensitivity as high as the product of all Hill coefficients of 
the kinases if they are weakly activated. In conclusion, a cascade can act 
as an amplifier of ultrasensitivity.

4. Effect of Feedbacks on Ultrasensitive Cascades

The dynamic behavior of signal transduction cascades is strongly con-
trolled by feedback loops. These feedbacks act on all levels of signal 
transduction, as illustrated in Figure 5 for the MAPK cascade. Feedbacks 
arise from autocrine induction of hormones, from the transcriptional 
regulation of cascade intermediates, from their covalent modification or 
from receptor internalization. In the following sections, the consequences 
of such feedback loops on the dynamics are briefly reviewed.

4.1. Bistability Caused by Positive Feedback

Many theoretical and experimental investigations have shown that a 
positive (or double negative) feedback loop in gene regulatory circuits 
is a structural condition that allows for bistability (41–45). A bistable 
system is a system that exhibits two stable steady states, separated by an 
unstable state. Often the coexistence of the steady states is a function of 
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a stimulus; therefore, the system can be switched from one state to 
another at so-called saddle-node bifurcations (Figure 6). There is now 
ample evidence that bistability is important in biological signal pro-
cessing, in the cell cycle, in apoptosis, and in the yeast Gal/Glc network. 
Also, in the MAPK signal transduction cascade, a positive feedback loop 
wrapped around a signal transduction cascade can cause bistability 
(46–48). A prerequisite for observing bistability is that either the cascade 
or the feedback loop is ultrasensitive (49), as discussed in the following 
section.

IEGs

via PKC

Phosphorylation
of B/C−Raf and
Mek by Erk

Autocrine
Deactivation
Sensitization

Raf Raf*

Mek Mek**

Receptor
Adaptor
Ras

Erk Erk**

MKPs

Stabilization of
DUSP1/4
Induction of
DUSP1 und 6

Figure 5. Feedbacks in Ras/Raf/Mek/Erk signal transduction can be found at all 
levels. They involve direct modification, regulation of the phosphatase stability, 
autocrine signaling, and changes in expression.
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Figure 6. Whereas ultrasensitive cascades equipped with a positive-feedback 
loop may exhibit two stable steady states (solid line) separated by an uinstable 
state (dotted line), a cascade lacking ultrasensitivity often displays a transcritical 
bifurcation, where the stable and unstable steady state exchange their stability 
at a certain stimulus value.
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Bistability provides the means for a biological signaling system to sup-
press noise, to memorize the signaling history, or to perform all-or-none 
decisions. It is a mechanism to establish checkpoints, i.e. a threshold, 
which a stimulus has to exceed before the system is committed into a 
new state, e.g., cell cycle phase.

An intuitive, graphical way to investigate whether a system is bistable 
is a combined plot of the stimulus-response curve and of the effect of the 
feedback loop (open-loop approach) (50,51). This can be done as follows 
(Figure 7): first, one blocks the feedback loop and records the steady-state 
output as a function of a steady-state input. Subsequently, one blocks the 
signal-transduction cascade, perturbs the terminal kinase (the output), 
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Figure 7. How bistability arises. First, the feedback is inhibited and the stimulus-
response curve from Raf to Erk is drawn (A). Second, the cascade (Raf–Erk) is 
inhibited, and the Erk activity is varied to obtain the steady state of Raf. As Raf 
is dependent on the stimulus S and Erk activity, the curve shifts toward higher 
Raf activity for higher stimuli (B). The intersecting points of these curves in the 
combined plot correspond to the steady states (C). There are three situations: 
one intersecting point at low Erk-activity (corresponding to one stable off state), 
three intersecting points (corresponding to a stable off and on state and an 
unstable state in between), and an intersecting point at high Erk activity (a 
monostable system with high Erk-activity in steady-state). Depending on the 
slopes of the curves, all three situations might be reached by varying the stimulus. 
From the plot it is apparent that at least one curve needs to have a point of 
inflection to get three intersecting points.
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and measures the influence on the first kinase. As the curves represent 
lines where the cascade or the feedbacks are in steady state, respectively, 
their intersecting points are the steady state for the entire system.2 In
Figure 7, such curves are displayed for different stimuli. From these 
curves, it becomes clear that at least one of the curves must have a point 
of inflection, and thus must be ultrasensitive for the entire system to 
exhibit three steady states (intersecting points). If both the stimulus-
response curve and the feedback loop are not ultrasensitive, the system 
possesses maximally two steady states, one unstable and one stable, which 
give rise to a so-called saddle-node bifurcation. For networks containing 
feedback circuits with nonultrasensitive stimulus-response curves, the 
authors Binder and Heinrich (52) and Heinrich et al. (53) have investi-
gated the conditions under which the ground state is stable or loses its 
stability. If the network possesses a stable ground state, the system shows 
only transient activation. Otherwise the system would exhibit permanent 
activation, which might contribute to tumorigenesis (53).

4.2. Linear Response, Adaptation, and Oscillation Caused 
by Negative Feedback

Whereas positive feedback tends to destabilize the stable “off” state and 
often creates a second stable steady state, the existence of a negative 
feedback loop usually leads to a stabilization of the steady state (11,43,54). 
Three emergent dynamic phenomena have been described for ultrasen-
sitive signal-transduction cascades and negative feedback loops: a lin-
earization of the response (11), damped oscillations (interpreted as 
adaptation [33,55]) and sustained oscillations (9). In the following, these 
three phenomena will be briefly reviewed.

4.2.1. Linear Response
Sauro and Kholodenko (11) were the first who related the stimulus-
response curves of ultrasensitive cascades with those of an operational 
amplifier, a (negative feedback) device often used in analog electronic 
circuits to obtain a linear response. They showed that a negative feed-
back leads to a linear response over a wide range of stimuli. Kholodenko 
(9) derived the response coefficient of a cascade with a feedback loop:

R
R

r R
T

T
1 =

−
cascade
1

cascade1
. (23)

Here, Rcascade is the response coefficient of the cascade in isolation, r1
T is

the local response coefficient of the first kinase in the cascade upon 
changes in the targets (i.e., the effect of the feedback loop in isolation). 
In case of a linear negative feedback loop, r1

T = −1 and thus RT
1 simplifies

to:

2 This plot corresponds to null-clines in the phase-plane for a two-dimensional 
system. The conclusions drawn from these null-clines in higher dimensions than 
two are only valid in case both stimulus-response curves for the feedback and 
signal-transduction cascade are monotonic, see Angeli et al. (50) for details. 
Additionally, three intersecting points are not sufficient for bistability if there 
are other feedbacks within the cascade.
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R
R

R
T
1 = cascade

cascade1+
, (24)

if the first kinase is not saturated by the stimulus. Surprisingly, the 
response becomes linear if the response coefficient of the cascade 
becomes large compared to 1. This result depends strongly on the assump-
tion that r1

T = −1. Otherwise the response is approximately:

R rT
T1 ≈ − 1 (25)

Therefore, such a negative feedback loop together with a highly ultra-
sensitive cascade can be a strategy to “outsource” control of the sensitiv-
ity to the feedback. As long as the sensitivity of the cascade is high, only 
the sensitivity of the feedback determines the sensitivity of the system. 
Such a strategy might lead to higher robustness if the feedback is rather 
simple, such as Erk modifying an upstream molecule. Then, only this 
reaction has to be tightly controlled to yield an amplifier with robust 
sensitivity.

4.2.2. Adaptation
Often only the information that some concentration has changed is 
important, whereas information about the absolute value is not impor-
tant. For example, rising concentrations of growth factors indicate wound-
ing, and neighboring cells need to respond by migration and proliferation. 
If the signal-transmission is prolonged, however, this behavior might lead 
to cancer, and thus the response has to be terminated after some time. 
Another example is the sensing of nutritional gradients in bacterial che-
motaxis (56), where the bacteria need to respond to changes only as their 
size does not permit then to sense a gradient directly. To transduce only 
the information that something changes, the signal-transduction cascades 
need to adapt, i.e., they should become less sensitive to higher stimuli 
when a prolonged stimulus is given, and regain sensitivity if the stimulus 
drops. Lauffenburger (57) distinguishes two types of adaptation: perfect 
and partial adaptation. Perfect adapting systems show transient activa-
tion but have a steady-state output that is insensitive to the signal. 
In contrast, partial adapting systems show a peak of activity after 
stimulation but reach a steady state that is higher than that before 
stimulation.

A common motif in signal-transduction to gain adaptation is the nega-
tive feedback loop (58). A negative feedback can introduce damped 
oscillations in the cascade. If a stimulation is given to the system the 
target protein will be activated after some delay and will cause, e.g., 
feedback desensitization of the receptor, which leads to cascade adapta-
tion. Many Ras-activating receptors and adapter molecules are desensi-
tized this way. It is already apparent from Eq. 23 that a simple negative 
feedback system, where the terminal kinase desensitizes the receptor 
cannot perform perfect adaptation. Perfect adaptation requires that the 
steady state of the terminal kinase is insensitive toward the stimulus, 
i.e., RT

1 = 0. In other words, the cascade itself needs to be insensitive 
toward the stimulus, i.e., Rcascade = 0, but this implies that the cascade itself 
has to perform adaptation. This is also intuitively clear: if the steady state 

CIT_Ch15.indd 295CIT_Ch15.indd   295 5/22/2007 3:46:37 PM5/22/2007   3:46:37 PM



296 Blüthgen et al.

of the target kinase is insensitive to the stimulus, it cannot provide any 
information about the stimulus strength that can be used to desensitize 
the receptor. Therefore, other mechanisms have to be exploited to 
achieve perfect adaptation. One possibility is to feed the integrated 
output into the system, e.g., to have a molecule that has a very slow 
dynamics and integrates the difference between the desired steady-state 
output and the actual output, as it is realized in bacterial chemotaxis (59). 
However, perfect adaptation is probably not required in all systems, 
since, e.g., weak steady-state activation after partial adaptation of Erk 
may be insufficient to activate downstream targets.

4.2.3. Oscillations
Sustained oscillations play a crucial role to regulate diverse processes 
including the daily rhythm, also known as the circadian clock. Addition-
ally, the cell-cycle core oscillator ensures that the correct order of events 
in the cell division cycle is maintained, and thereby prevents carcino-
genesis. Finally, oscillations are known to be essential for segmentation 
during animal development, where spatially alternating structures are 
generated (60). Sustained oscillations can be observed if the cascade or 
the feedback loop are strongly ultrasensitive. In Kholodenko’s work (9), 
it was shown that a three-layer cascade can exhibit sustained oscillations, 
if the overall sensitivity exceeds a threshold value that is determined by 
the timescales in the cascade. The authors show that oscillations appear 
if the overall sensitivity (the sensitivity of the cascade and the feedback) 
exceeds 8, provided that the timescales of all levels of the cascade are 
equal. Sensitivity of eight in the Raf/Mek/Erk cascade might be reached 
in conjunction with positive feedback, and sustained oscillations have 
been reported (11).

5. Discussion

As outlined in the previous sections, ultrasensitivity in signal-transduction 
gives rise to cellular complex behavior, which allows cells to respond 
toward external stimuli in an appropriate way. If an ultrasensitive signal-
transduction cascade is equipped with one or more positive feedback 
loops, this cascade can act as a reversible or bistable (irreversible) switch, 
and thereby establishes checkpoints and cellular memory. In contrast, 
negative feedback can bring about linear responses and adaptation. If 
signaling cascades are particularly ultrasensitive, negative feedbacks can 
even generate sustained oscillations. As such complex phenomena cannot 
be understood intuitively, and simulation and bifurcation analysis are 
required to get insights into the behavior of biochemical networks (49).
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16
Employing Systems Biology to 
Quantify Receptor Tyrosine Kinase 
Signaling in Time and Space
Boris N. Kholodenko

Summary

Environmental cues received by plasma membrane receptors are pro-
cessed and encoded into complex spatiotemporal response patterns of 
protein phosphorylation networks, which generate signaling specificity.
The emerging synergistic, experimental computational approach is pre-
sented, which provides insights into the intricate relationships between 
stimuli and cellular responses. Computational models reveal how posi-
tive and negative feedback circuits and other kinetic mechanisms enable 
signaling networks to amplify signals, reduce noise, and generate complex 
nonlinear responses, including oscillations, ultrasensitive switches, and 
discontinuous bistable dynamics; and many of these predictions have 
been verified experimentally. The analysis of the spatial signaling dynam-
ics highlights an important distinction between electronic and living cir-
cuitry and shows how intriguing signaling phenomena are brought about 
by the heterogeneous cellular architecture and diffusion. Spatial gradi-
ents of signaling activities emerge as hallmarks of living cells. These gra-
dients guide pivotal physiological processes, such as cell motility and 
mitosis, but also impose a need for facilitated signal propagation, which 
involves trafficking of endosomes and signaling complexes along micro-
tubules and traveling waves of phosphorylated kinases.

Key Words: Epidermal growth factor receptor; computational modeling; 
feedback; bistable dynamics; MAPK cascades; combinatorial complexity; 
spatial gradients; reaction-diffusion equations.

1. Introduction

Cells respond to hormones and growth factors using a limited cadre of 
signaling pathways activated by cell surface receptors, such as G protein–
coupled receptors (GPCRs) and receptors with intrinsic tyrosine 
kinase (RTK) activities. These pathways interact with each other and 
form the multilevel signaling network that processes and integrates 
external cues. Several lines of recent evidence indicate that distinct 

300

CIT_Ch16.indd 300CIT_Ch16.indd   300 5/22/2007 3:47:26 PM5/22/2007   3:47:26 PM



Receptor Tyrosine Kinase Signaling in Time and Space 301

spatiotemporal activation profiles of the same repertoire of signaling 
proteins result in different gene activation patterns and diverse physio-
logical responses. Therefore, critical cellular decisions ranging from cell 
survival, growth, and proliferation to differentiation or apoptosis 
depended on the precise spatiotemporal control of activation response 
patterns of intracellular signal transducers.

GPCRs control a variety of physiological functions by activation of 
heterotrimeric G proteins, which gave the name to this largest family of 
cell surface receptors. After the guanosine diphosphate (GDP)/guano-
sine triphosphate (GTP) exchange, which is facilitated by an agonist-
activated receptor, G proteins dissociate into Gα and Gβγ subunits.
These subunits interact with multiple effectors, regulating ion channels 
and second messenger production, thereby triggering hormonal, sensory, 
and neurotransmitter signaling pathways (1,2). In addition to this classic 
paradigm, GPCRs can also stimulate cell proliferation and differentia-
tion, which is traditionally associated with RTK activation. Intriguingly, 
this overlap of GPCR and RTK signaling pathways can be partially 
explained by GPCR-mediated “transactivation” of RTKs (3,4).

Signaling by RTKs has long been in the limelight of scientific interest, 
owing to its central role in the regulation of embryogenesis, cell survival, 
motility, proliferation, differentiation, glucose metabolism, and apoptosis 
(active cell death) (5–7). Malfunction of RTK signaling is a leading cause 
of major human diseases, ranging from developmental defects to cancer, 
chronic inflammatory syndromes, and diabetes. All RTKs consist of three 
major domains: extracellular domains of ligand binding and dimerization 
(collectively called the ectodomain); a membrane-spanning segment; and 
a cytoplasmic domain, which possesses tyrosine kinase activity and con-
tains phosphorylation sites with tyrosine, serine, and threonine residues. 
RTKs can be activated by growth factors or transactivated by GPCRs. 
After ligand binding, RTKs undergo receptor dimerization (e.g., epider-
mal growth factor receptor (EGFR)) or an allosteric transition (e.g., 
insulin receptor, IR, and insulin-like growth factor receptor (IGF-1R)) 
(5,8). These structural transitions result in the activation of intrinsic 
tyrosine kinase activity and subsequent autophosphorylation. Autophos-
phorylation of RTKs initiates signal processing through a battery of 
receptor interactions with adapter and target proteins containing char-
acteristic protein domains, such as Src homology (SH2 and SH3), phos-
photyrosine binding (PTB) and pleckstrin homology (PH) domains 
(reviewed in 5,9,10). These proteins include Src homology and collagen 
domain protein (Shc); growth factor receptor–binding protein 2 (Grb2); 
Grb2-associated binder (GAB1/2); GTPase-activating protein (GAP); 
phosphoinositide-specific phospholipase C-γ (PLCγ); the 85-kDa subunit 
of phosphatidylinositol 3-kinase (PI3K); cytoplasmic tyrosine kinases, 
such as c-Src; the protein tyrosine phosphatase (PTP) SHPTP-2; insulin 
receptor substrates (IRS-1 to IRS-4 for IR or IGF-1R); and others. Sub-
sequent interactions of these proteins with downstream effectors gener-
ate complex biochemical circuits, including cascades of protein and lipid 
phosphorylation and dephosphorylation reactions.

Signal specificity and cellular decisions are outputs of the complex 
temporal and spatial dynamics of multiple signaling processes that involve 
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feedback regulation (11). The classic example is distinct functional 
responses of PC12 cells to EGF and nerve growth factor (NGF) activa-
tion, e.g., proliferation versus differentiation, attributed to different 
temporal patterns of extracellular signal regulated kinase (ERK) activa-
tion, i.e., whether ERK activation is transient or sustained (12–14). Like-
wise, sustained versus transient activation of the mitogen-activated 
protein kinase (MAPK) cascade was suggested to be a mechanism 
underlying RTK specificity in EGF- and hepatocyte growth factor–
induced keratinocyte migration (15). Interestingly, the activation of Raf-
1 has been linked to such opposing responses as the induction of DNA 
synthesis and growth inhibition (16,17). In NIH 3T3 cells, low Raf-1 
activity was shown to induce cell cycle progression, whereas higher Raf 
activity inhibited proliferation (18). This variety of biological outcomes 
of MAPK activation is thought to be related to the intricate dynamics 
of these kinase cascades. MAPK cascades can generate bistable dynam-
ics (where two stable “on” and “off” steady states coexist), abrupt 
switches, and oscillations (19–28), and MAPK responses depend dra-
matically on the subcellular localization and recruitment to scaffolds 
(29,30).

This chapter illustrates the benefits of the application of systems analy-
sis and modeling to the studies of RTK networks. It starts with a discus-
sion of mechanistic modeling of growth factor signaling and challenges 
that face mechanistic models. A novel “domain-oriented” approach (31–
33) that addresses the combinatorial complexity of interacting pathways 
is presented. Other modeling strategies, such as Bayesian networks or 
Boolean network modeling, are not discussed here. Next, this chapter 
surveys the temporal dynamics of information transfer and shows that 
basic signaling motifs can generate complex nonlinear dynamic phenom-
ena, including bistability and oscillations. Finally, the spatial aspects of 
intracellular communication are analyzed. The transfer of phosphoryla-
tion signals over distances larger than a few micrometers is often ham-
pered by rapid dephosphorylation. We suggest that endosomes and 
scaffolds, which have bound phosphorylated kinases and are driven by 
molecular motors, and traveling phosphorylation waves spread signals 
over large intracellular distances.

2. Challenges of Mechanistic Modeling

2.1. Computational Modeling of the EGFR Network

Experimental data alone are not sufficient to understand and predict 
signaling dynamics, and faithful computational models are required (34–
36). The EGF receptor (EGFR) pathway was one of the first test cases 
for computational modeling of signal transduction (37). EGFR is a 
member of the ErbB family of growth factor receptors, which involves 
ErbB1/EGFR, ErbB2/Neu, ErbB3, and ErbB4 (38). Aberrant signaling 
by this family often leads to human neoplasia, such as breast, lung, pros-
tate, bladder, and other cancers. The first mechanistic model of the EGFR 
pathway was published in 1999 and explained the temporal dynamics 
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of signaling events observed in liver cells after the onset of EGF stimula-
tion (39). Despite constant EGF level, cells showed markedly transient 
phosphorylation of EGFR and selected target proteins including PLCγ,
PI3K, and GAB (with peaks reached within the first 15 s and rapid 
decreases to pseudostationary levels by 2–3 min), whereas phosphoryla-
tion of other signaling proteins, such as Shc and the concentration of 
the Shc–Grb2–SOS complex, increased almost monotonically (40). 
Modeling suggests that the transient time-course of EGFR phosphoryla-
tion arises from a protection of phosphotyrosine residues against phos-
phatase activity, while occupied by an adaptor/target protein, whereas 
the slow dissociation of the complexes formed by the phosphatases 
and unphosphorylated PLCγ and PI3K may explain transient patterns 
of tyrosine phosphorylation of these proteins (39,41). In fact, the 
existence of such complexes between tyrosine phosphatases SHP-1 and 
SHP-2, as well as PLCγ and PI3K, was reported (42). Surprisingly, 
phosphorylation of adaptor/target proteins by EGFR was predicted to 
facilitate their subsequent dissociation from the receptor, e.g., Shc phos-
phorylation on Tyr 317 was suggested to significantly decrease Shc 
binding affinity for the EGFR receptor. This was unexpected because 
Tyr317 is located within the central collagen homology (CH) linker 
region of Shc at the distances of 53 and 110 residues away from the SH2 
and PTB domains that mediate binding to EGFR. However, recent work 
showed that Tyr317 phosphorylation significantly affects collective 
motions of Shc domains, increases structural rigidity of the CH linker 
region, and dramatically decreases the flexibility of the PTB and SH2 
domains, thus reducing their capacity to interact productively with 
EGFR (43).

Several EGFR pathway models that address important aspects of 
EGF-induced signaling were recently developed, including: (a) nonlinear 
dependence of the amplitude of MAPK activation on the EGF receptor 
number (44); (b) complex regulation of transient versus sustained 
responses of the MAPK cascade “gatekeepers,” small GTPases Ras and 
Rap1, to growth factors (45–47); (c) autocrine positive-feedback loops 
(48); (d) cross-talk between the MAPK and Akt pathways (49); and (e) 
integration of EGFR signaling from the plasma membrane and endo-
somes (50). Hypotheses generated by these models have a certainty and 
precision, which will further our understanding of signaling dynamics. A 
variety of software tools can assist in computational modeling (51–57), 
and several databases of biological models have been developed, offer-
ing an interesting environment to generate and test novel hypotheses by 
using a computer keyboard (58,59).

2.2. Combinatorial Increase in Network Complexity

Major challenges that face mechanistic modeling are the lack of quanti-
tative kinetic data and the combinatorial increase in the number of 
emerging distinct species and states of the protein network being modeled 
(60,61). The first challenge of experimental uncertainty is beginning to 
be addressed by nascent quantitative proteomics of posttranslational 
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modification (see Chapters 11 and 24). The second challenge arises 
because RTKs and many adapter proteins display multiple docking sites, 
serving as scaffolds that generate a variety of heterogeneous multi -
protein complexes, each involved in multiple parallel reactions. Mecha-
nistic modeling describes the functional states of a multi-domain protein 
by the function that simultaneously depends on the states of all domains 
of that protein. Each domain can assume multiple states; for instance, 
a docking site on a receptor or scaffold can be unphosphorylated and 
free, phosphorylated and free, phosphorylated and bound to a partner, 
which in turn can be unphosphorylated and free, or phosphorylated and 
bound to another protein or lipid, and so on. All of these distinct pos-
sibilities multiply and generate hundreds of thousands and millions of 
“micro-states,” which account for potentially formed molecular species, 
and even for a few initial steps following a ligand binding to a receptor 
(60). Importantly, these micro-states of a signaling network generate 
(micro)variables and chemical kinetic equations, one ordinary differen-
tial equation (ODE) for every micro-state (species). The problem of the 
combinatorial complexity for network modeling has been recognized 
(39,60,61). Several software tools addressing this problem have been 
proposed, including the “rule-based” ODE simulator BioNetGen, which 
automatically generates all species and reactions (53,62), and the sto-
chastic simulators StochSim and Moleculizer (54,61) that circumvent the 
explosion of the number of micro-states by generation of the species and 
reactions as needed during a stochastic simulation. However, for large 
networks of many interacting RTKs, scaffolds, and hundreds of other 
proteins, a microdescription becomes impractical for both deterministic 
and stochastic simulations.

In contrast, in a domain-oriented framework (31–33), we introduce 
so-called “macrostates” and a set of “macrovariables,” which depend on 
the control hierarchy of interactions between protein domains (distinct 
sites). Each macrovariable accounts for the states of a separate site on a 
protein and the domains that control this site. For instance, ligand binding 
and dimerization control the state of each docking site on a typical RTK, 
and the macrovariable associated with that site may depend on the 
ligand and dimerization state of the receptor. Therefore, instead of a 
single function that simultaneously depends on the states of all domains 
of a multidomain protein, a macro-description operates with several 
separate state functions for each protein domain. Although several mac-
rovariables are associated with a scaffold, a multiplicative (exponential) 
amplification of the number of microstates is substituted by an additive 
increase in the number of macrostates (31–33). A necessary prerequisite 
for the validity of a macrodescription and the reduction of a mechanistic 
model is the presence of protein domains/sites that do not influence
other sites allosterically or through interactions with bound partners. 
Importantly, the existence of additional sites involved in allosteric inter-
actions does not impede the reduction of combinatorial complexity of 
multi-component receptor-mediated signal transduction. This domain-
oriented framework drastically reduces the number of states and differ-
ential equations to be solved and, therefore, the computational cost of 
both deterministic and stochastic simulations (31,32).
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3. Complex Temporal Dynamics of Signaling Networks

3.1. Responses of Signaling Cycles and Cascades

Already simple, basic signaling motifs can exhibit complex dynamic 
behavior, including multiple steady states and sustained oscillations. A 
universal motif found in cellular networks is the cycle formed by two or 
more interconvertible forms of a signaling protein, which is modified by 
two opposing enzymes. Such enzymes can be a kinase that phosphory-
lates a target protein on serine/threonine or tyrosine residues (in mam-
malian cells) and a phosphatase that dephosphorylates these residues. 
Likewise, a guanine nucleotide exchange factor (GEF), such as SOS, and 
GAPs, such as RasGAP, catalyze the cyclic conversion for a small G 
protein, such as Ras (Figure 1). Cascades of such cycles form the back-
bone of most signaling pathways. A well-known property of these cycles 
is “ultrasensitivity” to input signals, which occurs when the converting 
enzymes operate near saturation (63). Depending on the degree of satu-
ration, the response of either interconvertible form ranges from a merely 
hyperbolic to an extremely steep sigmoidal curve. Sequestration of a 
signaling protein by converting enzymes significantly decreases sigmoi-
dicity of responses ((28) and Chapter 15 of this book). Likewise, ultra-
sensitivity can disappear if converting enzymes are inhibited or saturated 
by their products (64). Importantly, multisite phosphorylation that occurs 
through a distributive, multicollision mechanism was shown to increase 
the sensitivity dramatically, resisting the sequestration effect and leading 
to switch-like responses (25,65–67).

T

Kinase

Phosphatase

T Pi GDP GTP
saRsaR

GAP

SOS

A B

T

Kinase

Phosphatase

T PiT

Kinase

Phosphatase

T Pi GDP GTP
saRsaR

GAP

SOS

GDPGDP GTP
saRsaR

GAP

SOS

A B

Figure 1. Universal cycle motif in cellular signaling networks. (A) Phosphoryla-
tion and dephosphorylation cycle of a target protein (T). The protein T is phos-
phorylated by a kinase that converts T in its phosphorylated form Tp. An opposing 
phosphatase dephosphorylates Tp to yield T. (B) A kinetic cycle of the small 
GTPase Ras. The guanosine nucleotide exchange factor SOS catalyzes the trans-
formation of the inactive GDP-bound form of RasGDP into an active GTP-
bound form Ras-GTP). The GTPase–activating protein RasGAP (shown as 
GAP) is the opposing enzyme that catalyzes the reverse transformation.
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3.2. Feedback Loops Determine Input–Output Patterns and Can 
Bring About Dynamic Instabilities

Several interconnecting cycles acting on each other form a signaling 
cascade. An increase in the number of cycles or a positive feedback 
further increases the sensitivity of the target to the input signal (65,68). 
Positive feedback loops amplify the signal, whereas negative feedback 
attenuates the response. However, feedback loops not only change 
steady-state responses, but also favor the occurrence of instabilities. 
When a steady state becomes unstable, a system can jump to another 
stable state, start to oscillate, or exhibit chaotic behavior. Negative feed-
back and ultrasensitivity can bring about oscillations in the concentra-
tions of active kinases in a kinase/phosphatase cascade (21). Positive 
feedback can cause bistability (24), but, either alone or in combination 
with negative feedback, it can trigger oscillations; for example, the Ca2+

oscillations arising from Ca2+-induced Ca2+ release (35) and the cell cycle 
oscillations (69,70). Such positive-feedback oscillations generally do not 
have sinusoidal shapes (which is a characteristic for only negative-feed-
back oscillations) and are referred to as relaxation oscillations. These 
oscillations operate in a pulsatory manner: a part of a dynamic system is 
bistable, and there is a slow process that periodically forces the system 
to jump between “off” and “on” states, generating periodic swings. Impor-
tantly, negative feedback not only attenuates the input signal or leads to 
oscillatory behavior, but also endows signaling pathways with robustness 
to parameter variations within the feedback loop (71,72). For instance, 
genetic variability of protein expression or medical drugs that affect 
processes within a negative feedback loop would have only minor influ-
ences on signaling responses, compared with the situation where target 
processes are outside this loop (71).

4. Spatial Dimension of Cell Signaling

Distinct temporal patterns of downstream response to the activation of 
GPCRs and RTKs are further regulated by translocation of signaling 
proteins to diverse cellular locations and their colocalization with various 
scaffolding and cytoskeletal proteins (73–75). The spatial control of sig-
naling is pivotal for key cellular processes, such as cell division, motility, 
and migration. During evolution, cells have developed not only the 
means to control the temporal dynamics of signaling networks, but also 
mechanisms for precise spatial sensing of the relative localization of 
signaling proteins. Positional information is critical for signaling from 
different cellular compartments, including the plasma membrane, the 
cytoplasm, and intracellular membrane compartments, such as endocytic 
vesicles and the Golgi complex. The same protein cascades operate in 
surprisingly dissimilar ways when localized to different cellular compart-
ments (30). We show how basic principles of the control of reaction rates, 
diffusive movement, and directed transport underlie sophisticated mech-
anisms to activate signaling by the membrane recruitment of binding 
partners, to provide spatial cues that guide cellular decisions, and to 
transmit signals to distant cellular targets.
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4.1. Membrane or Scaffold Recruitment of Interacting Partners 
Switches on Signaling Responses

Growth factor stimulation triggers the mobilization of cytosolic proteins 
to cellular membranes, scaffolding, and cytoskeletal elements. The classic 
example is the membrane recruitment of SOS and RasGAP, which 
activate and inactivate, respectively, the membrane-anchored small G 
protein Ras, which acts as the “gatekeeper” of the MAPK/ERK cascade 
(5,76). This recruitment is mediated by RTKs, e.g., EGFR, or scaffolds, 
e.g., Gab1/2, which bind to the membrane phospholipid PIP3 (the product 
of PI3K) (10). Importantly, these interactions do not increase SOS 
and RasGAP catalytic activities, but only recruit the proteins to the 
membrane. We are left with the question of why the membrane versus 
cytoplasm localization facilitates the catalysis. Adam and Delbrück 
suggested that the reduction in dimensionality might enhance reaction 
rates between solutes that bind to membranes and membrane-bound 
species (77); the solutes should not get lost by wandering off into the 
bulk phase. However, the diffusion-limited rates in the membrane are 
about two orders of magnitude slower than in the cytosol and, therefore, 
the membrane recruitment would decrease, and not increase the first-
encounter rates, as noticed by Bray (78). In fact, the function of the 
membrane recruitment has been recently shown to amplify the number 
of complexes formed between signaling partners (76,79). SOS and 
RasGAP bound to EGFR or PIP3–GAB1/2 are confined to a narrow 
layer below the plasma membrane, approximately 5 nm–10 nm thick, 
corresponding to the dimension of membrane-anchored proteins. The 
volume of that layer (Vm) is much smaller than the cytoplasmic volume 
(Vc). For a spherical cell with a radius of 10 μm and a proximal membrane 
layer of 10 nm, the ratio of cytosolic volume to proximal membrane 
volume (Vc/Vm) is between 102 and 103. This decrease in the reaction 
volume results in a 102–103-fold increase in the apparent affinity of SOS 
and RasGAP for Ras. Simulations demonstrate that this spatial organiza-
tion of SOS/RasGAP signaling is crucial for effective control of Ras 
activity (46).

Similar estimates apply for assembly of interacting signaling partners 
on scaffold proteins and membranes (80). Scaffolds act as templates, 
bringing together signaling proteins and organizing and coordinating the 
function of entire signaling cascades (78). Importantly, our results suggest 
that the number of signaling complexes will increase only if these com-
plexes do not dissociate from a scaffold. Even if the interacting proteins 
were brought to close vicinity on a scaffold, the dissociation of the 
protein complex from the scaffold will result in further dissociation of 
the complex, which will be in thermodynamic equilibrium with its 
components.

4.2. Emergence of the Spatial Gradients of Signaling Activities 
Within Cells

In living cells, two opposing enzymes of a universal cycle motif (Figure 
1) can be spatially separated. For instance, a kinase can be localized to 
a scaffold or supramolecular structure, whereas a phosphatase can be 
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homogeneously distributed in the surrounding area of the cytoplasm. In 
this case, the spatial gradient of a target cytoplasmic protein can occur, 
with the high level of phosphorylation of this protein in the close vicinity 
of the scaffold and the low phosphorylation level at distant cytoplasmic 
areas (81,82). Likewise, the spatial gradient of a GTP-bound form of a 
small G protein can occur if the GEF for that protein is confined to a 
supramolecular structure, whereas a GAP freely diffuses in the cyto-
plasm (83). A variation to the theme of the spatial separation of signaling 
enzymes is a cycle where one enzyme-modifier is membrane-bound and 
the opposite enzyme is cytosolic. For a protein phosphorylated by a 
membrane-bound kinase and dephosphorylated by a cytosolic phospha-
tase, it was predicted theoretically that there can be a gradient of the 
phosphorylated form that is high, close to the membrane, and low within 
the cell (81). Given measured values of protein diffusivity and kinase 
and phosphatase activities, it was estimated that phosphoprotein gradi-
ents can be large within the intracellular space. These theoretical predic-
tions have materialized recently, when fluorescence resonance energy 
transfer–based biosensors enabled discoveries of intracellular gradients 
of the active form of the small GTPase Ran (84) and the phosphorylated 
form of stathmin/oncoprotein 18 (Op18/stathmin) that regulates the 
microtubule polymerization (85,86).

We will demonstrate how intracellular signaling gradients can arise 
from chemical transformation and diffusion. Importantly, this analysis 
explains that the spatial gradients of signaling activities can emerge even 
in small bacterial cells (87,88). First, we will consider the simplest one-
dimensional geometry that corresponds to a cylindrical bacterial cell of 
the length L. We will assume that a kinase is localized to the membrane 
at a single pole of this cell (at the spatial coordinate x = 0) and a phos-
phatase is distributed in the cytoplasm. The kinase phosphorylates a 
target protein with rate vkin

men (defined as the surface rate at x = 0). The 
phosphorylated protein diffuses into the cell and gets dephosphorylated 
by the phosphatase at rate vp. The spatiotemporal dynamics of the phos-
phorylated form, cp, of the interconvertible protein is governed by the 
reaction–diffusion equation,

∂
∂

=
∂
∂

− ( )c

t
D

c

x
v cp p

p p

2

2 , (1)

with the following boundary conditions,

−
∂
∂

=
∂
∂

=
= =

D
c

x
v

c

x
p

x
kin
mem p

x L0

0, . (2)

The boundary conditions stipulate that the diffusive flux equals vkin
men at

the kinase pole and zero at the opposite pole. When the diffusivities D
are equal for the phosphorylated cp and unphosphorylated cu forms of 
the target protein, the total protein concentration is constant across 
the cell, cp + cu = Ctot (which is untrue for different diffusivities (82)). 
The steady-state spatial profile cp(x) is determined by letting the time-
derivative in equation (1) equal zero,
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When the phosphatase is far from saturation (a reasonable assumption 
for most cytosolic phosphatases), vp = kpcp (kp = Vmax/Km is the observed 
first-order rate constant), the analytical solution to equations 2 and 3 
reads,
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When aL << 1, the phosphoprotein concentration decreases almost 
linearly, and when aL ≥ 1, it decreases nearly exponentially cp(x)/cp(0) ≈
e−ax, with distance x from the membrane (the dimensionless parameter 
aL is recognizable as the square root of the Damkohler number). This 
provides a straightforward and powerful criterion that demonstrates that 
large phosphoprotein gradients exist when the dephosphorylation time 
1/kp is smaller than the diffusion time L2/D (82). The kinase activity only 
influences the concentration cp(0) near the membrane (81,82). This cri-
terion helps us understand how the cell may control phosphoprotein 
gradients, an increase in phosphatase expression levels, or activities will 
make these gradients more precipitous, whereas down-regulation of 
phosphatase activities or the compartmentalization of phosphatases will 
decrease the steepness of or even eliminate the gradients.

Spherical symmetry simplifies analysis of signaling in three dimen-
sions. For a cell of the radius L with a kinase located on the cell surface 
and phosphatase in the cytoplasm, the reaction–diffusion equation that 
governs the dynamics of the phosphorylated form cp of the target protein 
has the following form (cf. equation 1)
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Here, x is a dimensionless coordinate equal to the distance from the cell 
center divided by the cell radius, L (the distance d from the cell mem-
brane is expressed in terms of x as d = (1 − x) × L); vkin and vp are the 
rates of the kinase and phosphatase, respectively. As for previous equa-
tions, we will assume that the phosphatase is not saturated by a target 
phosphoprotein, vp = kpcp. Next, the steady-state solution to equation 5 
can be found readily, and the ratio of the phosphoprotein concentrations 
at the distance x from the cell center and at the plasma membrane is 
given by Kholodenko et al. (82,89):
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Therefore, when aL ≥ 1, the phosphoprotein concentration decreases 
toward the cell interior approximately exponentially, and the total rela-
tive gradient (the ratio cp(1)/cp(0)) equals (eaL − e−aL)/2aL (81).

A similar exponential decrease in the phosphorylation signal cp(r) may 
occur when a kinase is bound to a supramolecular structure with the 
radius s and a phosphatase resides in the surrounding area of the radius 
L. Assuming spherical symmetry, the steady-state concentration cp(r) is 
determined by,
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Figure 2 illustrates how the concentration cp(r) decreases for different 
values of aL. We conclude that signaling gradients cannot be built merely 
by diffusion, but require the spatial segregation of opposing enzymes.

4.3. Do Phosphoprotein Gradients Exist in MAPK Cascades?

The calculations above suggest that phosphoprotein gradients might 
exist in kinase/phosphatase cascades where kinases and phosphatases 
are spatially separated, such as in MAPK cascades. MAPK cascades 
contain three interconnected cycles of MAPK, MAPK kinase (MAP2K), 
and MAP2K kinase (MAP3K). Mammalian cells express at least four 
different MAPK families, including the ERK, the JNK, and p38 MAPK 
cascades. A kinase cascade that is the best characterized kinetically is the 
MAPK/ERK cascade that consists of ERK (MAPK), MEK (MAP2K), 
and Raf (MAP3K). Upon RTK stimulation and Ras activation, the cyto-
solic Raf is recruited to the cell membrane. At the membrane, Raf 
undergoes a series of activation steps involving dephosphorylation of the 
inhibitory phosphorylated Ser 259, interaction with 14-3-3 proteins, and 
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Figure 2. Steady-state activation profile of a phosphoprotein. A target protein 
in the cytoplasm is phosphorylated by a kinase localized to a supramolecular 
structure of the radius s = 0.1μm and dephosphorylated by a homogeneously 
distributed phosphatase in the cytoplasmic area of the radius L = 10μm. The 
relative phosphorylated fraction, cp(s)/cp(d), declines with the distance d from
the kinase that is confined to the spherical structural element (see equation 7). 
The steepness of the gradient (reciprocal of the characteristic length) is deter-
mined by the parameter α (α2 = kp/D is the ratio of the phosphatase activity kp

and the protein diffusivity D).
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phosphorylation on specific tyrosine residues (90–92). Although the 
mechanism of activation is not yet completely understood, the associa-
tion of Raf with membranes appears to be essential for its activation. 
The Raf kinase phosphorylates the cytosolic kinase MEK (MKK) at 
the plasma membrane, whereas soluble serine/threonine phosphatases 
dephosphorylate the activated MEK in the bulk phase. In the cytosol, 
active MEK kinase phosphorylates ERK on threonine and tyrosine resi-
dues, and specific ERK phosphatases are localized to the cytosol and 
nucleus. Because ppMEK is dephosphorylated predominantly in the 
cytoplasm, the spatial gradients of ppMEK and therefore ppERK may 
occur. A typical value for a cell radius is 10 μm, the protein diffusivity D
is estimated to be of the order of 10−8 cm2/s, and values for kp were found 
to range from roughly 0.1 to 10 s−1 (76,82,93). With the kp values of 0.25 
or 1 s−1, the distance from the plasma membrane at which the phosphory-
lation signal is attenuated by a factor of 10 is equal to 6.8 or 2.6 μm,
respectively. Importantly, the exponential character of the decline in the 
phosphorylation signal with the distance from the cell membrane does 
not depend on the specific activity and kinetics of the membrane kinase, 
provided that the phosphatase is far from saturation. More elaborated 
calculations confirm that MEK and ERK gradients can be precipitous 
(94, 95), decreasing the strength of the phosphorylation signal to the 
nucleus. Instructively, the phosphorylation signal reaches further into the 
cell when the cascade has more levels (81); this may be one reason that 
cascades exist. The cascades found in eukaryotes tend to be longer than 
cascades in prokaryotes, which may be related to larger distances of 
signal propagation in eukaryotes.

5. Facilitated Mechanisms for Intracellular 
Signal Propagation

5.1. A Novel Role of Endocytosis in Activation of MAPK Signaling

Upon ligand binding and activation, many GPCRs and RTKs internalize 
via clathrin-coated pits. For instance, in hepatocytes, over 50% of phos-
phorylated EGFR is transferred to early endosomes during the first
10 min after EGF stimulation (40). Internalization takes receptor–ligand 
complexes and other signaling proteins from the plasma membrane and 
brings them inside the cell. Molecules, which were not recycled back to 
the cell membrane, are degraded in lysosomes. Although internalized 
GPCRs and RTKs continuously recycle back to the cell surface after 
dephosphorylation in endosomes, a significant proportion of receptors 
are located internally (40). Therefore, traditionally, clathrin-mediated 
endocytosis has been implicated in down-regulation of signaling by 
plasma membrane receptors. A novel role of endocytosis in “turning on” 
activation of the ERK cascade by cell surface receptors was first reported 
for the EGF receptor (96). A conditional defect in endocytosis can be 
imposed by the regulated expression of a mutant form of dynamin 
(Dyn1-K44A), a GTPase that is required for clathrin-coated vesicle 
formation. In HeLa cells, this expression led to a marked decrease 
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in EGF-induced ERK activation, whereas Shc phosphorylation was 
enhanced in endocytosis-defective cells. Subsequent studies have dem-
onstrated that both GPCR- and EGFR-mediated activation of ERK is 
sensitive to various distinct inhibitors of clathrin-mediated endocytosis, 
including monodansylcadaverine, depletion of intracellular K+ or choles-
terol, cytochalasin D, and a mutant dynamin (96–101). Therefore, a pos-
sible mechanism of control over signal transduction may engage receptor 
endocytosis. However, whereas experimental evidence points to an 
essential role of receptor endocytosis in the activation of MAPK cas-
cades, the reason for the involvement of the endocytic machinery remains 
poorly understood (98,100). Interestingly, in some cellular systems, endo-
cytosis was not required to activate ERK (102).

The relationship between receptor internalization and ERK activation 
allows us to suggest that trafficking of signaling intermediates within 
endocytic vesicles may be an efficient way of propagating the signal 
(94,103). Endocytic trafficking of active MEK can help to avoid the for-
mation of steep spatial gradients of phosphorylated MEK and ERK 
because this mechanism overcomes the spatial separation of kinases and 
phosphatases within the MAPK cascade (94,103–106). Therefore, the 
endocytosis of phosphorylated MEK (or a protein complex containing 
activated MEK), rather than of activated receptors, appears to be critical 
for ERK activation.

5.2. Active Transport of Endosomes and Scaffolds is a Mechanism 
that Facilitates Signal Propagation

Living cells have developed multiple mechanisms to facilitate the infor-
mation transfer from the plasma membrane to distant targets. These 
include trafficking of phosphorylated kinases with endosomes (“signal-
ing endosome”) and nonvesicular signaling complexes driven by mole c-
ular motors (89,94,103,105–107). Recent evidence indicates that the 
MAPK cascade components can bind to scaffolding proteins, e.g., MP1 
and JIP-1 in mammalian cells (108). Dephosphorylation of kinases 
assembled on scaffold complexes might be decreased, or even precluded, 
because of sterical obstructions, as was suggested by Levchenko et al. 
(109).

Scaffolding also helps to deliver an entire signaling complex contain-
ing the MAP kinases to endocytic vesicles. Novel mechanisms have been 
discovered that link GPCRs to MAPK activation through use of β-
arrestin as a scaffold for the ERK and JNK cascades (3,110). Besides its 
role in GPCR desensitization, β-arrestin has been shown to promote the 
targeting of the receptor to clathrin-coated pits. As β-arrestins can also 
recruit and activate Src, it is likely that the entire ERK and JNK cascades 
can be activated and recruited for clathrin-mediated internalization. 
Recent data suggest that molecular motors can be involved in transport 
of signaling complexes. In fact, in nerve cells, scaffolding proteins for the 
JNK pathway, known as JIPs, is the cargo for the molecular motor kinesin 
(111). Significantly, it was recently shown that survival signals in neurons 
are transmitted by a complex of phosphorylated ERK with intermediate 
filament vimentin and importin, driven by the molecular motor dynein 
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(107). Motor-mediated movement of the endosomes and kinase com-
plexes along microtubules is remarkably distinct from chaotic diffusive 
motion and is able to prevent the formation of precipitous reaction–
diffusion gradients (89,94,105,106).

6. Outlook

The spatiotemporal organization of mitogenic pathways analyzed here 
is central for understanding the control over intracellular signal transfer. 
Quantitative models integrate data on the distinct spatiotemporal dynam-
ics of signaling from different cellular compartments and provide new 
insight into the connection between external stimuli and the signaling 
outcome in terms of gene expression responses. A picture is emerging, 
in which simple diffusion has a limited role in intracellular transport of 
signaling complexes. Endocytosis, scaffolding, molecular motors, and 
traveling waves of phosphoproteins appear to be involved in the propa-
gation of signals to different cellular locations. These mechanisms control 
cellular decisions that determine cell fate.
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Dynamic Instabilities Within 

Living Neutrophils
Howard R. Petty, Roberto Romero, Lars F. Olsen, and Ursula Kummer

Summary

The oscillatory metabolism of human neutrophils is used as a prototype 
biochemical subsystem to illustrate the ability of computational biology 
to both explain data and to predict biochemical mechanisms. Our work 
focuses upon the events surrounding neutrophil adherence and activa-
tion, which are features of many diseases. Cell activation is associated 
with increases in either or both the metabolic oscillatory frequency and 
amplitude. Our experimental studies and computational simulations 
have provided evidence that the frequency increase is linked to hexose 
monophosphate shunt (HMS) activation. Surprisingly, the increase in 
frequency is accounted for by a reduction in glycolytic activity. Increases 
in metabolic amplitude may also be observed during neutrophil activa-
tion and have been linked with the peroxidase cycle. Cell activation is 
independently regulated by these two pathways. The clinical relevance 
of this work is illustrated by frequency changes associated with febrile 
temperatures and diabetic levels of glucose. It is also demonstrated by 
neutrophil regulation during pregnancy, wherein high frequency oscilla-
tions are not observed and high amplitude oscillations are observed in 
the absence of cell activation stimuli. In this case, translocation of HMS 
enzymes to the centrosome accounts for the reduction in its activity, 
whereas translocation of myeloperoxidase (MPO) to the cell surface 
accounts for heightened peroxidase cycle activity during pregnancy. 
Hence, systems biology can be used to understand cell properties in 
complex clinical settings.

Key Words: Neutrophils; computational models; metabolism; disease 
mechanisms.

1. Introduction

Self-organization is a key concept in modern biology. On a macromo-
lecular level, self-organization is seen in protein folding, the pairing of 
nucleic acid strands, and lipid bilayer formation, which are driven largely 
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by entropy. At a larger distance scale, thermodynamics may also play a 
role in the formation of chemical patterns. Living cells are complex non-
linear systems maintained far from equilibrium by the constant flux of 
matter and energy. Consequently, intracellular chemistry may lose stabil-
ity to form temporal oscillations and propagating concentration waves. 
We propose that these dynamic emergent structures are more than a 
physical consequence of cellular chemistry; they represent a means of 
information processing and distribution. These dynamic instabilities bear 
a striking resemblance to model chemical systems, such as the Belousov–
Zhabotinskii reaction.

1.1. The Belousov–Zhabotinskii Reaction

The Belousov–Zhabotinskii reaction is the most thoroughly studied 
oscillatory chemical system. In this reaction, a transition metal ion cata-
lyzes the oxidation and bromination of an organic dicarboxylic acid by 
bromate ions in an acidic environment. The reaction is held far from 
equilibrium for an extended period of time by including excess substrate. 
Due to chemical nonlinear kinetics and chemical feedback (i.e., the 
products of later steps being substrates of earlier steps), this system dis-
plays chemical oscillations and traveling waves (1). This reaction is some-
times considered as a model for glycolysis in cells.

1.2. Chemical Oscillations in Cells

Both prokaryotic and eukaryotic cells exhibit chemical oscillations (2). 
These oscillations take many forms, including glycolysis, cAMP, calcium, 
cytoskeletal assembly, mitosis, and other biorhythms. Human peripheral 
blood neutrophils are one useful model system for exploring the nature 
of cell oscillations and their potential clinical relevance. Morphologically 
polarized human neutrophils have been shown to exhibit oscillations 
in many parameters, such as membrane potential, calcium, metabolism, 
and receptor proximity (3). Moreover, oscillations in cell functions, 
including cell velocity, shape change, and pericellular proteolysis, as well 
as the production of superoxide anions, hydrogen peroxide and NO, have 
been reported (3). Interestingly, the periods of many of the chemical 
oscillations match the periods of the functional oscillations, suggesting a 
relationship between the two. Indeed, in some cases, such as nicotin-
amide adenine dinucleotide (phosphate) (NAD[P]H) oscillations and 
periodic superoxide release, both the period and phase of the oscillators 
match.

1.3. Neutrophils as a Model System

Neutrophils represent a particularly good model system for the study 
of cell oscillations. One important advantage of neutrophils is that they 
are semiautonomous cells; they are able to respond to information, 
migrate through tissues, and carry out their physiologic responsibilities 
without requiring other cell types. This is in sharp contrast to most cells, 
which are spatially fixed and require interactions with other cells for 
their maintenance or function. Changes in cell phenotype often require 
changes in gene expression. However, neutrophils can differentiate to 
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the activated state within seconds. Importantly, enucleated neutrophils, 
which are called cytoplasts, are able to perform many neutrophil func-
tions, such as phagocytosis, oxidant production, and migration (4), sug-
gesting that many functions are hardwired in the cytoplasmic compartment. 
Finally, in contrast to most cell types, neutrophils rely primarily upon 
glycolysis for energy production (5).

One oscillator, the production of NAD(P)H, is closely associated with 
oxidant production. Superoxide production begins with the uptake of 
extracellular glucose, which is required for its synthesis (6,7). Indeed, cell 
activation is associated with an increase in the affinity of the glucose 
transporter for glucose (8). Superoxide is produced by the NADPH 
oxidase according to:

1
2

NADPH + O2 → 1
2

NADP+ + 1
2

H+ + O2
− (1)

NO production also begins with the donation of electrons from 
NADPH:

L-arginine + NADPH + H+ + O2 →
 NG-hydroxy-L-arginine + NADP+ + H2O
and

2NG-hydroxy-L-arginine + NADPH + H+ + O2 →
2L-citrulline + NADP+ + 2H2O + 2NO (2)

Superoxide and NO may then yield additional downstream reactive 
oxygen metabolites and reactive nitrogen intermediates. Oscillations 
in NADPH, superoxide, and NO production are correlated with one 
another and vary in their frequency and amplitude, which can now be 
understood at a fundamental level based on the results of systems biology 
experiments.

In this chapter, we will combine recent work in experimental biophys-
ics and computational biology to understand the dynamic behavior of 
metabolic systems in living neutrophils. The clinical ramifications of this 
work will be demonstrated through the analysis of in vitro model systems 
and the study of clinical samples. This interdisciplinary synthesis illus-
trates how systems biology may contribute to understanding complex 
biological problems.

2. Computational Biology of Neutrophil Oscillators

As illustrated in Figure 1, neutrophils exhibit metabolic oscillations, 
which have been detected using the autofluorescence of NAD(P)H and 
of mitochondrial flavoproteins (3,9). Cells that are not morphologically 
polarized exhibit very low amplitude oscillations with a period of roughly 
three minutes. Morphologically polarized neutrophils exhibit oscillations 
that vary in period (roughly 10 s or 20 s) and amplitude. These two param-
eters of polarized cells may yield four types of metabolic oscillations: low 
frequency and low amplitude, low frequency and high amplitude, high 
frequency and low amplitude, and high frequency and high amplitude 
(Figure 1A). We will begin by exploring computational simulations of 
these oscillators.
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2.1. Role of MPO

2.1.1. Theory
To better understand the dynamic aspects of neutrophil biology, we set 
up model equations (ODEs) to describe neutrophil glycolysis (10) and 
its HMS (11), as well as its peroxidase cycle (12), which is coupled via 
the NADPH oxidase to the rest of the network. These equations and 
their parameters are described in detail in the cited references.

The nonlinear properties of MPO kinetics (13) and its abundance 
in neutrophils (14) suggest that it participates in the system’s oscillatory 
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counts/sec.

1 min.

4
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2

1

3
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Figure 1. Representative kinetic traces of autofluorescence NAD(P)H oscilla-
tions (column A) and oxidation of H2-TMRose by individual morphologically 
polarized human neutrophils. To ascertain local oxidant release, H2-TMRose was 
contained in a gelatin matrix surrounding the neutrophils attached to a micro-
scope slide. Short time courses are shown for illustrative purposes. Polarized 
neutrophils exhibit oscillations of approximately 20 s, and very low levels of 
oxidant release (trace 1 in A and B, respectively). Neutrophil activation with 
FMLP increases the frequency of NAD(P)H oscillations and oxidant release 
(trace 2). Exposure to IFN-γ led to oscillations of higher amplitude (traces 3). 
When cells were treated with both IFN-γ and FMLP, high-frequency/-amplitude 
NAD(P)H oscillations and high rates of oxidant production were observed. 
Vertical bars, 105 counts/s in columns A and B. The horizontal bar represents 
1 min.
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behavior. Therefore, we initially investigated its role during the activa-
tion of neutrophils (11). Like many peroxidases, MPO is able to catalyze 
the oxidation of NAD(P)H by molecular oxygen. This reaction involves 
a highly complex mechanism (Figure 2) that exhibits oscillations (12). In 
neutrophils, MPO is present either in membrane-enclosed vesicles (acidic 
granules), other vesicles formed by the fusion of several different types 
of vesicles (14), and the phagosome after phagocytosis, or it is associated 
with the outer plasma membrane surface or extracellular milieu after 
degranulation. NAD(P)H, on the other hand, is not present at these sites. 
Therefore, we studied if separation of the substrate and the enzyme 
allows the nonlinear enzymatic cycle to proceed within a membrane-
enclosed compartment when electrons are shuttled by organic com-
pounds like melatonin. We showed that this is indeed the case. Moreover, 
the concentration of this organic compound has a profound influence on 
the amplitude of the oscillations, which increased with concentration.

2.1.2. Experimental Verifi cation
The computational prediction that melatonin enhances the amplitude 
of the oscillations in neutrophils has been experimentally verified, as 
shown in Figures 3 and 4. However, MPO is not the sole origin of 
NAD(P)H oscillations in neutrophils. This has been shown using MPO 
inhibitors such as salicylhydroxamic acid and MPO knockout mice 
(unpublished data). Although these conditions prevent large-amplitude 
oscillations, they do not block the oscillations per se. Hence, the role of 
neutrophil MPO in metabolic dynamics seems to be the generation of 
large amplitudes.

2.2. Role of Glycolysis

2.2.1. Theory
As glycolysis exhibits oscillations in some cell types, we set up a model 
for glycolysis in neutrophils (10). We were able to observe oscillations 
with a frequency fitting the experimental observations. Surprisingly, this 
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Figure 2. The MPO cycle is illustrated.
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Figure 3. Simulating the effect of increasing concentrations of melatonin. Time 
series of NADPH in the presence of an initial concentration of melatonin of 
(a) 300 mM and (b) 350 mM. From Olsen et al., 2003 (11).
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Figure 4. Experimental measurements of the effect of increasing concentrations 
of melatonin on NAD(P)H oscillations. (A) Although melatonin alone has no 
effect on NAD(P)H oscillations, when FMLP is added to the cells both the fre-
quency and amplitude of the oscillations are increased. (B) When these same 
reagents are added in the opposite order, FMLP first increases the frequency, 
followed by a melatonin-dependent increase in amplitude. From Olsen et al., 
2003 (11).
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frequency has a strong tendency to increase when the flux through the 
system is lowered; for example, by enhancing the consumption of glucose-
6-phosphate by the HMS (10). Because we and others provided experi-
mental evidence that HMS activity is drastically increased by certain 
stimuli, this likely explains the change of frequency in NAD(P)H con-
centration oscillations observed upon activation.

2.2.2. Experimental Verifi cation
Our computational findings, again, have been verified experimentally. 
First, experimental studies have shown that the HMS inhibitors 6-
aminonicotinamide and dexamethasone block the formation of higher 
frequency NAD(P)H oscillations (11). To demonstrate the perturbation 
in glycolysis, we measured the autofluorescence of flavoproteins in neu-
trophils before and after exposure to high (12 mM) glucose concentra-
tions, which activate the neutrophil’s HMS (10). As the amount of 
flavoprotein autofluorescence is inversely related to electron transport 
rate (9), it can be used as an indicator of metabolic activity. Glucose 
addition increases the steady-state autofluorescence level, which reflects
a decrease in mitochondrial activity corresponding to the aforemen-
tioned computational predictions. These findings were further supported 
by addition of a HMS inhibitor 6-aminonicotinamide (15), which pre-
vented the increase in autofluorescence (10).

The combination of computational and experimental investigations 
allowed us to show a crucial role for MPO for increased amplitudes, 
whereas glycolysis is largely responsible for a shift in frequencies. We will 
now discuss the biological and medical implications of these findings.

3. Biomechanisms

In the preceding discussion, we have provided experimental evidence to 
support the existence of dynamic oscillations in human neutrophils and 
the underlying mechanisms using computational methods. The following 
paragraphs will explore some of the biological ramifications of these 
changes.

3.1. Effects of Exogenous Factors on Metabolic Oscillations

Human leukocytes respond to a wide variety of exogenous factors by 
undergoing activation. These factors may be of biological or synthetic 
origin. As leukocytes provide host defense against infectious agents, 
bacterial components often influence the activation status of cells. For 
example, lipopolysaccharide (LPS), which is a component of the outer 
wall of gram-negative bacteria, activates neutrophils (16). LPS promotes 
high-frequency NAD(P)H oscillations in neutrophils (16). Similarly, the 
peptide N-formyl-met-leu-phe (FMLP), which is similar or identical to 
certain bacterial peptides, also promotes neutrophil activation and high 
frequency NAD(P)H oscillations (Figure 1A, trace 2). Hence, bacterial 
substances known to activate neutrophils and the HMS alter the fre-
quency of NAD(P)H oscillations. In addition to lipids and peptides, 
bacteria may possess unique nonmethylated CpG DNA sequences, which 
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are recognized by cell receptors. Model CpG DNA oligonucleotides have 
the interesting property of being unable to stimulate neutrophil activa-
tion unless cells have been previously exposed to other exogenous 
or endogenous factors that promote high-amplitude NAD(P)H oscilla-
tions (17). Another well-known exogenous activator of leukocytes is the 
synthetic tumor promoter phorbolmyristate acetate (PMA). PMA is 
believed to activate cells via protein kinase C. In contrast to LPS 
and FMLP, PMA increases the amplitude of NAD(P)H oscillations, 
rather than the frequency of these oscillations. A wide variety of exoge-
nous substances that activate neutrophils influence their NAD(P)H 
oscillations.

3.2. Effects of Endogenous Factors on Metabolic Oscillations

In response to infectious agents, the body produces a variety of mole-
cules that mediate communication among immune cells. These molecules 
carry out a variety of tasks, such as recruiting leukocytes to a particular 
location and promoting their activation. Examples include the inter -
leukin (IL) and interferon (IFN) families of molecules. A variety of rel-
evant endogenous molecules were tested and found to influence the 
NAD(P)H frequency or amplitude. IL-8 and tumor necrosis factor-α
(TNF-α) induce high-frequency NAD(P)H oscillations in neutrophils, 
just as FMLP and LPS do. These agents apparently act on biological 
signaling pathways that activate the HMS. In contrast, the regulatory 
molecules IL-12 and IFN-γ increase the oscillatory amplitude without 
affecting the frequency. Interestingly, two endogenous molecules, IL-2 
and IL-6, have been found to be amplitude-dependent frequency modu-
lators (18). These molecules have no effect on neutrophil oscillations or 
oxidant release unless a factor that enhances amplitude, such as IFN-γ
or PMA, is present; in this case, the cell expresses high frequency and 
amplitude changes. Hence, many endogenous regulators of neutrophil 
function affect the HMS or peroxidase cycles.

Although melatonin is best known as a pineal hormone, it is also a 
biosynthetic product of leukocytes (19). It promotes priming, but does 
not directly activate neutrophils (20); that is, melatonin increases the 
production of oxidants, but only in the presence of another molecule that 
activates oxidant production. When melatonin is added to neutrophils, 
there are no effects on NAD(P)H oscillations or oxidant release. 
However, if FMLP is added to melatonin-treated cells, both the fre-
quency and amplitude of NADPH oscillations change, as if FMLP has 
been combined with IFN-γ. Computational simulations predicted these 
effects of melatonin and the role of the peroxidase cycle in these 
processes (11).

3.3. Temperature-Dependent Changes in Frequency: Fever

Fevers are often associated with illness, especially infectious diseases. 
Fever is a complex physiological response involving both biochemical 
and temperature changes within the host. A variety of endogenous 
signals and exogenous substances, such as bacterial components, are 
capable of inducing a rise in body temperature. Although the biochemi-
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cal changes have been well described, the physiological relevance of the 
thermal component of fever has been poorly understood. The tempera-
tures found during human fever do not affect bacterial growth, although 
host defense is enhanced (21). However, it is unclear just how tempera-
ture regulates immunity. Recently, we have found that the frequency of 
NAD(P)H oscillations is a function of temperature (22): as the tempera-
ture increases, the oscillatory frequency increases. This is especially pro-
nounced near 37ºC. As NAD(P)H oscillations are coupled to the periodic 
production of superoxide anions and NO, the rates of the production of 
these reactive metabolites increase with temperature. As these molecules 
promote the destruction of bacteria, we propose that the thermal com-
ponent of fever is a systemic signal acting to nonspecifically increase host 
defense capability throughout the host.

3.3. Glucose-dependent Changes in Frequency: A Possible Model of 
Diabetic Tissue Damage

As described above, increases in NAD(P)H oscillatory frequency are 
associated with cell activation, including activation of the HMS. One key 
feature of neutrophil activation is an increase in glucose transport, which 
is required for the activation of a neutrophil’s HMS (6–8). In eukaryotes, 
glucose uptake is mediated by facilitated diffusion; hence, heightened 
external glucose concentrations may affect glucose transport and metab-
olism. In normal, healthy individuals, fasting serum glucose levels are 
roughly 1 mM to 2 mM, which supports the generation of oxidative mol-
ecules as described above. However, much higher glucose concentrations 
(>12 mM) may be found in poorly controlled diabetic patients. Therefore, 
we compared the effects of normal and diabetic glucose levels on 
NAD(P)H oscillations and cell function. Just as molecules such as FMLP 
and IL-8 increase the NAD(P)H oscillation frequency and oxidant pro-
duction by neutrophils, heightened extracellular glucose levels increased 
NAD(P)H oscillation frequency, HMS activity, and oxidant production 
(10). In other words, diabetic levels of glucose cause the nonspecific
activation of neutrophils. Computational studies (see section 2.2) support 
the conclusion that HMS activation is accompanied by an increase in the 
NAD(P)H oscillation frequency. Importantly, neutrophils produce as 
many oxidants at 12 mM glucose as they do in response to many immu-
nologic stimuli. Indeed, heightened glucose influx caused by mass action 
may simply recapitulate the increase in glucose flux normally associated 
with neutrophil activation; this suggests that glucose flux is both a neces-
sary and sufficient condition for cell activation. This is substantiated by 
the fact that the drug LY-83583, which enhances glucose uptake, activates 
neutrophils.

These computational and experimental findings are consistent with 
clinical observations. Two clinical manifestations of diabetes are nonspe-
cific tissue damage, which is thought to be mediated by reactive oxygen 
metabolites, and increased susceptibility to infectious disease. When 
neutrophils were kinetically examined, 12 mM glucose activated meta-
bolic changes and oxidant release, as described in the previous para-
graph. However, after about 30 min, cells returned to a 20-s period 
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oscillation and were refractory to further stimulation. Hence, nonspecific
tissue damage may be caused by glucose-mediated cell activation. The 
cells become exhausted, perhaps by self-inflicted damage, and are unable 
to respond appropriately to infectious agents.

3.4. Immunomodulation in Pregnancy

It is well known that a pregnant woman’s immune system undergoes 
changes to protect the fetal semiallograft, yet maintain significant resis-
tance to infectious disease. For example, T helper type 2 cells appear to 
be enhanced during pregnancy, whereas the inflammatory activity of 
neutrophils is reduced (23). Specifically, the production of superoxide 
anions is reduced during pregnancy (24). These cellular changes are 
believed to account for the remission of autoimmune diseases, such as 
multiple sclerosis, rheumatoid arthritis, uveitis, etc., during pregnancy. To 
better understand the reduced neutrophil effector functions during preg-
nancy, we have studied the production of superoxide and NAD(P)H, 
which is the substrate-driving oxidant formation.

3.4.1. Biochemical Mechanisms Underlying Systems Behavior 
During Physiologic Regulation
We have found that neutrophils from pregnant women produce an inter-
mediate level of ROMs: fewer ROMs than fully activated nonpregnant 
cells, but more than resting cells from nonpregnant women. Dynamic 
studies characterized the NAD(P)H oscillations of nonpregnancy cells 
as: resting (low amplitude, low frequency), primed (low frequency, high 
amplitude), activated (high frequency, low amplitude), and fully acti-
vated (high frequency, high amplitude). Under normal conditions, preg-
nancy neutrophils primarily express low-frequency, high-amplitude 
oscillations despite conditions that would fully activate cells from non-
pregnant women (16). Several lines of evidence indicate that the high 
frequency oscillations are caused by activation of the HMS. We demon-
strated that the HMS was depressed in neutrophils from pregnant women, 
thus accounting for the reduction in superoxide produced by pregnancy 
neutrophils in comparison to cells from nonpregnant women, which is 
consistent with the computer simulations described above. Although this 
explains why ROM production is reduced, it does not explain how this 
is achieved. As receptor signaling pathways likely remain intact during 
pregnancy, we hypothesized that metabolism is a key element controlling 
ROM production. When the intracellular locations of a large panel of 
metabolic enzymes was analyzed, enzymes of the HMS, including G-6-
PDase, 6-PGDase, and transaldolase, were found at the periphery of cells 
from nonpregnant women, but at the centrosome (or cell center) of cells 
from pregnant women (16,25,26) (Figure 5). In contrast, the intracellular 
distribution of glycolytic enzymes was not affected by pregnancy. Fur-
thermore, resonance energy transfer and other studies suggested that the 
HMS enzymes form a multienzyme complex that is transported by 
dynein along microtubules (unpublished data). Thus, the HMS could be 
disengaged by translocating the HMS enzyme complex away from the 
source of G-6-P, hexokinase, which is found at the periphery of the cell 
(16). In this way, G-6-P remains available to glycolysis, and the metabolic 
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frequency is not affected. This enzyme translocation mechanism provides 
an important example of metabolic microcompartmentalization.

We next sought to explain the increase in amplitude found for preg-
nancy cells (16). Computational and experimental studies (11) indicated 
that the amplitude changes could be accounted for by activation of the 
peroxidase cycle during pregnancy. To test this hypothesis, a panel of 
MPO inhibitors was added to pregnancy neutrophils. These inhibitors 
blocked the high amplitude oscillations. As the peroxidase cycle in human 
leukocytes is driven by MPO, we examined NAD(P)H oscillations in 
pregnant normal and MPO knockout mice. We found high-amplitude 
oscillations in neutrophils from normal pregnant mice, but low-
amplitude oscillations in MPO knockout mice (27). Furthermore, we 
could switch the oscillatory phenotype of nonpregnancy cells to preg-
nancy cells by adding exogenous MPO. Conversely, we could reverse the 
pregnancy phenotype to nonpregnancy by removing MPO from the cell 
surface or by adding MPO inhibitors. Hence, the increased oscillatory 
amplitudes observed during pregnancy can be accounted for by the 
translocation/activation of MPO in pregnancy neutrophils (Figure 6). 
This seems reasonable from a clinical point of view, as activation of 
the peroxidase cycle may help offset the reduction in HMS activity to 
provide some level of oxidative defense against infectious agents during 
pregnancy.

Diabetes is a potentially severe complication of pregnancy that can 
lead to birth defects and other health concerns. In section 3.3, we described 
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Figure 5. The trafficking of HMS enzymes in neutrophils from pregnant women. 
G-6-PDase (G-6-PDH) and transaldolase (TAL), key enzymes of the oxidative 
and nonoxidative arms of the HMS, were localized within neutrophils obtained 
from nonpregnant and pregnant women. These enzymes were found predomi-
nantly at the periphery of cells from nonpregnant women, but near the centro-
some in cells from pregnant women.
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how diabetic levels of glucose could promote dynamical changes and 
enhance ROM production in normal neutrophils. As the peroxidase cycle 
is independently regulated by MPO trafficking, heightened glucose levels 
during pregnancy may allow G-6-P to escape the glycolytic apparatus to 
reach the HMS enzymes sequestered at the centrosome, thereby supply-
ing NADPH to support ROM production. As the peroxidase cycle is 
already engaged during pregnancy, glucose-mediated activation of the 
HMS could lead to anomalously high levels of oxidants (28), thereby 
accounting for many aspects of this disorder.

3.4.2. Cell Biological Mechanisms of Immunoregulation 
During Pregnancy
Although the changes in NAD(P)H dynamics, oxidant production, and 
enzyme trafficking in cells from pregnant women have been described, 
the biological pathways controlling these dynamic changes have not been 
identified. One important difference between a pregnant and non-
pregnant woman is the presence of the placenta. Within the placenta, 
trophoblasts, which form a barrier between the mother and fetus, are 
thought to be important regulators of immune cell activity. We have 
recently found that the NAD(P)H oscillations and oxidant production 
of activated neutrophils rapidly revert to a normal phenotype upon 
contact with trophoblast cell lines, cytotrophoblasts of patients, and pla-
cental villi (29). Trophoblasts mediate these dramatic changes in neutro-
phil activation via at least two metabolic pathways affecting how cells 
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Figure 6. Relationship between NADPH oscillations and enzyme trafficking.
High frequency oscillations are found when the HMS is near the cell periphery 
in cells exposed to agents such as FMLP, but not when it is located at the centro-
some in similarly treated cells. Intracellular MPO does not affect oscillations, but 
when it is translocated to the cell surface, the peroxidase cycle is engaged, thus 
increasing NAD(P)H amplitudes. Enzyme trafficking accounts for the pheno-
typic changes in pregnancy cells.
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handle glucose (29). In the first mechanism, contact with trophoblast 
membranes reduces the neutrophil’s glucose transport, as illustrated by 
the reduced uptake of NBD-glucose in Figure 7. This strategy allows the 
placenta to rapidly protect both the fetus and itself from activated neu-
trophils. The second strategy, described above for maternal neutrophils, 
is the translocation of HMS enzymes from the cell periphery to the cen-
trosome, which also affects the nature of intracellular glucose metabo-
lism. Protection from harmful oxidative radicals is apparently important 
enough to merit two lines of trophoblast protection. The trophoblast 
molecules mediating these changes are currently under study.

4. Conclusions

Although molecular biology has provided a wealth of information con-
cerning biological structures, it has been less successful in providing an 
understanding of the behaviors of biological systems, especially their 
dynamic behaviors. One chief concern of systems biology is to integrate 
multiple levels of biological research into a coherent vision of biological 
behavior. For example, consciousness does not arise from a single gene; 
this behavior emerges from a large set of neurons each containing a large 
number of participating molecules; the system expresses characteristic 
dynamical properties at all levels. In this chapter, we have described 
recent work combining computational and experimental studies designed 
to better understand the nature of neutrophil differentiation from the 
resting to activated phenotypes. This amenable model system is relevant 
to numerous human clinical conditions. In addition to its widely known 
roles in host resistance to infectious disease, neutrophil activation also 
participates in host resistance to cancer, tissue damage during ischemia–
reperfusion injury, such as heart attacks and transplantation, autoim-
mune disease, etc. We found that the integration of computational and 
experimental biology offers unprecedented insight into understanding 
the dynamics of neutrophil metabolism, which, in turn, provides novel 
routes in drug discovery. Surprisingly, we have found that very simple 
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Figure 7. Trophoblast membranes affect the transport of NBD-glucose into 
neutrophils. Subconfluent trophoblast cultures on glass coverslips were ruptured 
with distilled water, and then washed. Neutrophils and FMLP were then added. 
Neutrophils in the proximity of trophoblast fragments (small arrows) inter-
nalized less NBD-glucose than those cells unattached to trophoblasts (large 
arrows). This difference is shown quantitatively in C, which is a line profile analy-
sis of the cells labeled 1 and 2 in A. This suggests that trophoblast contact can 
regulate glucose transport in neutrophils.
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epigenetic mechanisms are crucial in understanding metabolic systems 
dynamics; glucose transport, enzyme trafficking, and temperature are key 
variables in understanding neutrophil activation.

Previous studies have identified comparatively slow (τ = 3 min) and 
fast (τ = 10 s) oscillations of NAD(P)H autofluorescence in cells and 
tissues (2,30). Although the relatively slow oscillations of NAD(P)H 
have been attributed to the action of phosphofructokinase, the origins 
of other oscillatory properties, such as the amplitude and higher fre-
quency oscillations, have been unknown. Computational biology has not 
only explained certain oscillatory properties but it has also predicted cell 
biological properties that were subsequently confirmed. Using a model 
based on the MPO–NADPH oxidase reaction (11), computational simu-
lations predicted that neutrophil activation is accompanied by increased 
NAD(P)H frequencies and amplitudes. The roles of the NADPH oxidase 
and MPO were confirmed using inhibitors. Inhibitors and MPO knock-
out mice support the role of the peroxidase cycle in affecting metabolic 
amplitudes. The role of the HMS in promoting higher frequency oscilla-
tions is supported by inhibitors of glucose-6-phosphate dehydrogenase, 
including 6-aminonicotinamide and dexamethasone. To understand the 
mechanism accounting for the change in period from τ = 20 s to τ = 10 s, 
a model of the upper part of glycolysis, including terms for the HMS, was 
created. Using computational parameters mimicking those of activated 
neutrophils, such as HMS and glucose transport activation, the frequency 
was found to increase, as observed experimentally (10). These simula-
tions predicted that the increase in frequency was caused by competition 
between the HMS and glycolysis for glucose-6-phosphate. This predic-
tion is consistent with the subsequent experimental findings that: i) mito-
chondrial flavoprotein autofluorescence is increased at τ = 10 s (suggesting 
a reduction in electron transport, which is downstream from glycolysis) 
and ii) at least for a brief period of time, inhibition of glycolysis promotes 
oscillations of τ = 10 s. Although these ideas were developed in the 
context of neutrophil activation, they may be more generally applicable 
in cell biology.

Neutrophil activation represents a spectrum of biological states and 
chemical conditions. The metabolic dynamics of resting cells is domi-
nated by phosphofructokinase. Adherent cells have a distinct phenotype, 
and can generate large amounts of oxidants (31). Unstimulated adherent 
cells display very low levels of oxidant release, and τ = 20 s. NAD(P)H 
autofluorescence oscillations. Neutrophils may demonstrate an activated 
HMS, which is accompanied by τ = 10 s oscillations. On the other hand, 
if cells exhibit an “activated” MPO activity (e.g., MPO translocation to 
the cell surface), higher amplitude oscillations are observed. Finally, both 
HMS enzymes and MPO can be activated to yield very high levels of 
oxidant production. Importantly, these pathways can be independently 
regulated by exogenous (e.g., LPS) and endogenous (e.g., IFN-γ) com-
pounds. This provides a new rational framework encompassing both 
computational and experimental biology that provides a more quantita-
tive understanding of neutrophil activation and priming.

Our findings suggest that many complicated diseases, all involving 
neutrophil activation at some level, may be understood at a more basic 
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level using the tools of systems biology. The evolutionary advantage of 
febrile temperatures is that NAD(P)H oscillations and oxidant release 
increase in frequency, thereby delivering more oxidants to pathogens or 
other targets. It is not yet known if this change can be accounted for by 
some simple change, such as an increase in glucose transport, or some 
other factor affecting the system’s behavior. Enhanced glucose transport 
is required for receptor-mediated neutrophil activation (6–8). Impor-
tantly, when glucose transport is nonspecifically enhanced by raising the 
extracellular glucose concentration, neutrophil activation is observed. 
This may explain the increase in nonspecific tissue damage during dia-
betes, as well as the depression in neutrophil function.

The concepts developed in these basic computational and experimen-
tal studies can be further applied to clinical samples. The immunological 
changes during pregnancy are poorly understood. For example, evidence 
has indicated that human neutrophils are inhibited during pregnancy, 
whereas other data indicate that they are activated. Our findings suggest 
that both of these statements are true. In normal pregnant women, the 
HMS is inhibited by translocation of HMS enzymes to the centrosome. 
In contrast, the peroxidase cycle is activated by translocation of MPO to 
the cell surface. At least some of these changes appear to be influenced
by trophoblasts, as they contribute to HMS enzyme translocation and 
glucose transport. Thus, it is now possible to understand neutrophil acti-
vation in complex physiological states quantitatively, via computational 
simulations, and qualitatively, via cell biological experiments.
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18
Efficiency, Robustness, and 
Stochasticity of Gene Regulatory 
Networks in Systems Biology: 
l Switch as a Working Example
Xiaomei Zhu, Lan Yin, Leroy Hood, David Galas, and Ping Ao

Summary

Phage λ is one of the most studied biological models in modern molecu-
lar biology. Over the past 50 years, quantitative experimental knowledge 
on this biological model has been accumulated at all levels: physics, 
chemistry, genomics, proteomics, functions, and more. All of its compo-
nents are known in great detail. The theoretical task has been to integrate 
its components to make the organism work quantitatively and in a har-
monic manner. This tests our biological understanding, and would lay a 
solid foundation for further explorations and applications, which is an 
obvious goal of systems biology. One of the outstanding challenges in 
doing this has been the so-called stability puzzle of the λ switch; the 
biologically observed robustness and the difficulty in mathematical 
reconstruction based on known experimental values. In this chapter, we 
review the recent theoretical and experimental efforts on tackling this 
problem. An emphasis is put on the minimum quantitative modeling, 
where a successful numerical agreement between experiments and mod-
eling has been achieved. A novel method, tentatively named stochastic 
dynamical structure analysis, emerged from such study, and it is also 
discussed within a broad modeling perspective.

Key Words: Phage λ; genetic switch; robustness; efficiency; cooperation; 
stochastic processes; dynamical landscape; systems biology.

1. Introduction

The completion of the Human Genome Project prompts biological and 
medical research into a new phase, one that has never been experienced 
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in biology. It is evident that a vast uncharted territory lies ahead, with 
tremendous promise in store (1). Great questions with important con-
ceptual and practical implications have been asked and discussed (2–4). 
Speculations on the general principles underlying those great questions, 
and general methodologies to solve them, have been extensively debated 
since the beginning of this century (5,6). One of the authors of this 
chapter has been steadily promoting such exposition and contributing to 
this trend (7). Such efforts are needed not only as “a call to arms,” they 
also help to define the various emerging fields. Nevertheless, in practical 
research, a full range of endeavors has to be explored. New tools will be 
invented to solve new problems and to take on old problems. In this 
chapter, we therefore turn our attention to the other side of considera-
tion, not as an indication to underestimate the value of grand themes, 
but as an example to balance the grandeur. Instead of asking general 
questions and receiving limited answers, we wish to ask limited questions 
on a limited system and to find as complete answers as possible, along 
with a few general answers. We have been attempting this for the past 
few years. Such a methodology has been very effective since the dawn 
of modern science, and was first exemplified by Galileo. Specifically, we 
will focus our attention to the robustness and stability of a genetic switch 
(8,9) in phage λ, arguably the biological model that jump-started modern 
molecular biology (10).

In the modern information age, switch-like structures are building 
blocks in all architectures. It is the realization of the binary digit, the unit 
of information, and the “atom” today. As biology has been increasingly 
viewed as an information science (11–13), it would be desirable to have 
a thorough understanding of this building block. Indeed, detailed analy-
ses have demonstrated that the response of a complexity network is 
often dealt with by various switches (14) and that genetic networks were 
shown to have the computational ability (15). By drawing a close analogy 
to the integration circuitry in an electronic wiring board, this methodol-
ogy has been successfully employed in the modeling of genetic regulation 
during the earlier developmental stages in sea urchins (16). Currently, 
the study of switching in biology has been ranging from responses to 
environmental changes (17,18), developmental biology (19–21), neural 
networks (22,23), physiological response (24,25), genetic regulation 
(26–29), signal transductions (30), memory effect (31,32), olfactory 
perception (33), synthetic biology (34), biotechnological applications 
(35–38), to photosynthesis (39) and many other areas (40–43). Even in 
cell cycle processes, if viewing such a process not as driving by a cycling 
engine, but as what is controlled by a traffic light, the switch-like struc-
ture is likely to play a dominant role (44–46). Switch has indeed estab-
lished itself as one of the fundamental elements in biological processes 
and as a paradigm for both experimental and theoretical studies in 
biology.

Why then has so much effort been expended on studying a particular 
virus genetic switch, the λ switch? To paraphrase Ptashne (8), this is a 
fair question desiring a clarification at the beginning. After all, every case 
in biology is at least partly accidental and specific, the workings of every 
organism having been determined by its evolutionary history, and the 
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precise description we give of a process in one organism will probably 
not apply in detail to another. Thus, both robustness and stochasticity in 
biostructure must be included and carefully studied. This has been well 
illustrated in the context of the fundamental biological processes, such 
as those mentioned in the previous paragraph. As already indicated 
above, at various stages of development, depending in part on environ-
mental signals, cells choose to use one or another set of genes, and 
thereby to proceed along one or another developmental pathway. It 
would be of great value to know what molecular mechanisms determine 
these choices. Hence, the λ life cycle is indeed a prototype for this 
problem, with the structure of feedback loops and the effect of stochas-
ticity. In addition, we have a nearly complete understanding of all its 
parts; its genome was in fact known (47) long before the completion of 
the Human Genome Project, and the corresponding quantitative knowl-
edge has been accumulated at all levels: physics, chemistry, DNA, protein, 
and functions (8,48,49). Despite such a long history of quantitative 
studies, the stability and robustness of the λ switch remained as one of 
the outstanding puzzles for computational biology at least until 2004 
(9,50,51). The theoretical challenge has been to put all its components 
together as a harmonic working organism, one of the major tasks of 
systems biology.

In addition, one might wonder at the value of using quantitative and 
detailed modeling. Biological theories are generally known for their 
descriptive nature. For example, when Darwin presented his evolution-
ary theory, no single equation had been used. It was rather remarkable 
that though one of Darwin’s main predictions, the age of Earth, was in 
direct conflict with known physics at his time, it was physics, not Darwin’s 
theory that later went through a fundamental transformation to resolve 
this glaring contradiction, to the good of both physics and biology. 
Nevertheless, it would be wrong to conclude that a quantitative method 
would be of no use in biology. In fact, some subfields in biology, such as 
physiology and population genetics, are among the most mathematical 
in the natural sciences (3). As biology is becoming an information science 
(11–13), more subfields would be likely to do so in the future. The impor-
tant question is: What would be the right framework of mathematical 
description (9,52)? It is true that an excessive use of mathematical lan-
guage, which might be attractive to a modeler, generally does not enhance 
the understanding of a specific biological phenomenon (53). For example, 
with excessive parameters, any phenomenon can be described by a set 
of equations. Such a situation is not acceptable under Ockham’s razor. 
The other extreme is to look for an effective description, with the hope 
of capturing the biological essence. The latter description is necessarily 
gross and qualitative, although extremely popular and particularly suc-
cessful in biology. However, many features are obviously left behind by 
such an approach. It would be desirable to have a detailed quantitative 
study that can bridge those two approaches. The phage λ genetic switch 
provides precisely one of the excellent opportunities in biology to do so 
(54); one side is an on/off Boolean-type description for the genetic switch, 
and the other side is the detailed physical and chemical equations.
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The rest of the review is organized as follows. Salient biological experi-
mental studies on phage λ switch are summarized in section 2. Its key 
biochemical modeling elements are summarized in section 3. The sto-
chastic dynamical structure analysis method is discussed in section 4, 
within the minimal quantitative model of phage λ. Calculated results and 
the comparison to biological data are discussed in section 5. In section 
6, we summarize what has been done and place the minimum quantita-
tive modeling methodology in a broader context. In section 7, the research 
effort on λ switch is put into an optimistic outlook.

2. Phage l Genetic Switch

2.1. Phage l Life Cycle

Bacteriophage λ is a virus that grows on a bacterium (8,55,56). It is 
one of the simplest living organisms. Almost all its parts have been 
known for the past 50 years. The genome of phage λ consists of a single 
DNA molecule wrapped in a protein coat. Upon infection of the host 
Escherichia coli cell, the phage λ injects its genome inside the bacterium 
and leaves the protein coat outside. Inside the bacterium, it chooses one 
of two modes of growth (Figure 1). Phage λ uses molecular-genetic 
apparatus of the cell for running and executing its own ontogenetic 

Lytic Phase Lysogenic Phase

Infection

Phage DNA
circulation

Phage DNA replication

(lytic growth)

Phage DNA replication

Packing of DNA

into heads, and

assembling of

phage heads and
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progeny phages

Integration of phage DNA

Cell division

Cell lysis

Reinfection

Spontaneous decision on

switching from lysogeny to

lysis: l genetic switch

Decision on lysis vs lysogeny

Figure 1. The schematic diagram of phage λ life cycle. The stochastic dynamics 
of a rare spontaneous decision on switching from the lysogenic phase to the lytic 
phase is the focus of this chapter. The induction by UV light and other SOS 
processes are not considered here.
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subprograms to produce new λ phage particles, resulting in the lysis of 
the cell. Or, it can establish dormant residency in the lysogenic state, 
integrating its genome into the DNA of its host and replicate as a part 
of the host genome. In these two different life cycles, different sets 
of phage genes are expressed as a result of molecular interactions. 
Realistic modeling of the robustness and stability of such a process has 
remained one of the most important challenges in biocomputation and 
bioinformatics.

Because the analogous molecular interactions to phage λ are likely to 
underlie many developmental (8) and epigenetic (56) processes, one 
wishes to acquire deep understanding of the regulation of major biologic 
functions on the molecular level through the study of the genetic switch 
of phage λ. One of these functions is the programming of the epigenetic 
states; the ways the phage decides if it is going to follow a lysogenic or 
lytic growing state. Over the past five decades, extensive biological inves-
tigations have provided a fairly good qualitative picture in this respect. 
There exists a plausible scenario to guide the understanding of the exper-
imental observations (8).

The maintenance and operation of the genetic switch is another func-
tion performed by the gene regulatory network (8,55,56). The phage 
growing in the lysogenic state remains latent, unless it is provoked. For 
example, switching to the lytic state happens when a signal is sent to 
activate RecA proteins, which cleave CI monomer, sending the phage 
into lytic growth. It is observed that the phage λ genetic switch is both 
highly stable and highly efficient. When the phage grows in a lysogenic 
state, it remains latent for many generations. Spontaneous induction 
happens less than once in 1 million cell divisions (Figure 1). Once the 
phage is exposed to an appropriate signal, it changes to the lytic state at 
a rate of almost 100%. Such a coexistence of stability and efficiency of 
the genetic switch in phage λ has been considered a mystery from the 
theoretical and mathematical modeling viewpoint.

2.2. Modeling Effort

There have been continuous mathematical and numerical activities on 
modeling phage λ. The rationale is rather straightforward; the biological 
functions should emerge as the systems properties from the model based 
on the molecular mechanism of phage regulatory elements and their 
independently measured parameters. The elegant physical–chemical 
model formulated by Shea and Ackers (48) for gene regulation of phage 
λ has become the foundation for later studies. However, soon afterward, 
Reinitz and Vaisnys (57) pointed out that the inconsistency between 
the theoretical results and experimental data may suggest additional 
cooperativity. Arkin et al. (58) performed stochastic simulation on 
phage λ development for the decision of lysogeny in the very early 
stage, demonstrating that this process is stochastic. Recently, Aurell and 
Sneppen (59) analyzed the robustness of phage λ genetic switch, using a 
method based on the Onsager–Machlup functional (58), and concluded 
that their theoretical analysis could not reproduce the robustness of the 
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phage λ genetic switch. Their further study confirmed earlier results (51). 
Similar modeling was found mathematically from a different perspective 
(50).

The coexistence of the switch stability and switching efficiency is an 
apparent inconsistency for the following reasons. The lysogenic state is 
exceptionally stable. The fluctuations in the growth environment, the 
so-called extrinsic fluctuations, and the intrinsic fluctuation in the genetic 
switch, which are caused by the discrete nature of chemical reactions, do 
not easily and accidentally flip the switch. Then when the phage is “threat-
ened,” how can the switching process become so complete with so little 
outside intervention? The question about internal inconsistencies in 
these models naturally arises; whether the easily operable induction, or 
highly efficient switching, in Shea and Ackers’ work (48) is a result of 
sacrificing the robustness of the genetic switch. Phrased differently, if a 
model were so constructed that it faithfully reproduces the observed 
robustness of the genetic switch, would it lose the efficiency of the switch? 
Undoubtedly, a credible model of phage λ should reproduce the proper-
ties of robustness, stability, and efficiency of the genetic switch simultane-
ously. From such a model we should also be able to calculate the observed 
quantities of phage development, such as the protein numbers and lysog-
enization frequencies. We hope to show that a foundation for such a 
mathematical framework against the experimental data is there, thanks 
to recent theoretical efforts on phage λ (9,48,57–59).

2.3. Modeling Strategy

Our procedure is to first summarize a minimal quantitative model for 
the phage λ genetic switch, a model that is motivated by both first prin-
ciples and biological observations. We then ask the question of whether 
or not this minimal modeling can be successfully used to quantitatively 
reproduce various experimental results, and whether it is qualitatively 
correct in biology. If successful, the necessary modifications of molecular 
parameters in the modeling may be viewed as the in vivo and in vitro
differences. Additional or different molecular processes inside a cell 
should be responsible for such differences. Some of them may be identifi -
able by current experimental techniques. If the answer to the above 
question would be negative, we would conclude that the minimum quan-
titative modeling would not be enough. More biological causes should 
be looked for instead. We will show that the answer so far is positive. By 
combining a newly developed powerful nonlinear dynamics analysis 
method, which takes the stochastic force into account (61–63) and clas-
sifies the stochastic dynamical structure into four different elements, with 
the previously established physical–chemical model (48), a novel math-
ematical framework was formulated to calculate the following quantita-
tive characteristics of epigenetic states and developmental paths (9,64): 
the protein numbers in one bacterium, the protein number distributions, 
the lifetime of each state, and the lysogenization frequencies of mutants 
using the wild type as reference. We should emphasize that our review 
is focused on a specific biological system, though we have made an effort 
to put such work in perspective.
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cI transcript
cro transcript

OR3

PRM PR

OR2 OR1

Figure 2. The OR controlling region of the phage λ genetic switch. The mathe-
matical studies (9,64) indicate that the cooperative binding of CI dimers at the 
OR1 and OR2 sites is a key to the robustness of the genetic switch. Such a co -
operative binding enhances the positive CI feedback. When the CI positive 
feedback is turned on by the existing CI dimers, CI proteins are synthesized. The 
phage evolves to the lysogenic state. Otherwise, Cro proteins are synthesized 
and the phage evolves to the lytic state.

3. Towards Quantitative Modeling

3.1. Binding Configurations

The genetic switch controlling and maintaining the function of phage λ
consists of two regulatory genes, cI and cro, and the regulatory regions 
OR and OL on the λ DNA. Established lysogeny is maintained by the 
protein CI, which blocks operators OR and OL, preventing transcription 
of all lytic genes, including cro (8,55,56). In lysogeny, the CI number 
functions as an indicator of the state of the bacterium; if DNA is damaged, 
e.g., by UV light, the protease activity of RecA is activated, leading to 
degradation of CI. A small CI number allows for transcription of the lytic 
genes, starting with cro, the product of which is the protein Cro.

The decision making, or the switching, is centered on operator OR, and 
consists of three binding sites, OR1, OR2, and OR3, each of which can be 
occupied by either a Cro dimer or a CI dimer (55,56). As illustrated in 
Figure 2, these three binding sites control the activity of two promoters 
PRM and PR for cI and cro transcriptions, respectively. The transcription 
of cro starts at PR, which partially overlaps OR1 and OR2. The transcription 
of cI starts at PRM, which overlaps OR3. The affinity of RNA polymerase 
for the two promoters, and subsequent production of the two proteins, 
depends on how Cro and CI bound to the three operator sites, and 
thereby establishes lysogeny with approximately 500 CI molecules per 
bacterium. If, however, the CI number becomes sufficiently small, the 
increased production of Cro flips the switch to lysis.

There have been numerous quantitative experimental studies on the 
stability in the switching of bacteriophage λ. Recently, the frequency of 
spontaneous induction in strains deleted for the recA gene has been 
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reported independently by three groups (65–67), which was reviewed by 
Aurell et al. (67). They all confirmed two earlier important observations: 
that there is a switching behavior and that the switch is stable. In 
addition, they all obtained consistent numerical values for the switching 
frequency, in spite of the use of different strain backgrounds done on 
different continents and at different times. However, computational and 
mathematical attempts to quantitatively understand this behavior have 
not been successful, even permitting the possibility that the wild type 
may be more stable (59,67).

More recent data (9, 64) suggest that the wild type may be two orders 
of magnitude more stable than previously observed (66); the switching 
rate to the lytic state may be less than 4 × 10−9 per minute. In addition 
to the call for more experimental studies, this puts the theoretical model-
ing in a more challenging position. This wild-type data was used as the 
main input to further fix the model in the works of Zhu et al. (9). The 
previous data were also discussed to illustrate a pronounced exponential 
sensitivity in such a modeling, which is summarized in the following 
sections.

The CI and Cro protein molecules in the cell are assumed to be in 
homeostatic equilibrium. There are not always the same numbers of CI 
and Cro dimers bound to the operators at any particular time. These 
numbers are fluctuating, and the equilibrium assumption should give the 
size of these fluctuations. The key inputs are CI and Cro dimerization 
constants, and the Gibbs free energies for their bindings to the three 
operator sites OR1, OR2, and OR3 (68–74) (see the legends of Tables 1 
and 2 for a more detailed description).

Following Ackers et al. (75) and Aurell et al. (67), we encode a state s 
of CI and/or Cro bound to OR by three numbers (i,j,k) referring to OR3,
OR2, and OR1, respectively. The coding for s is 0 if the corresponding site 
is free, 1 if the site is occupied by a CI dimer, and 2 if the site is occupied 
by a Cro dimer. The probability of a state s with i(s) CI dimers and j(s) 
Cro dimers bound to OR is in the grand canonical approach of Shea and 
Ackers (48)

 pR(s) = Z−1 [CI]i(s) [Cro]j(s) [RNAp]k(s) exp(−ΔG(s)/RT). (1)

For example, if CI occupies OR1 and Cro occupies OR2n and OR3, we have 
i(s) = 1, j(s) = 2, k(s) = 0, and pR(s) = pR(221). RNA polymerase (RNAp) 
can occupy either OR1 and OR2, or OR2 and OR3, not other configurations.
There are a total 40 states represented by s (Table 1). The normalization 
constant Z is determined by summing over s: Z = Σs[CI]i(s) [Cro]j(s)

[RNAp]k(s) esp(−ΔG(s)/RT). Here, [] denotes the corresponding protein 
dimer concentration in the bacterium, ΔG(s) the binding energy for 
binding configuration s, R the gas constant, and T the temperature.

3.2. Deterministic Model

We further simplify the expression of pR(s) by noticing that CI and Cro 
control the operator (8,55,56). If OR1 and OR2 are unoccupied by either 
CI or Cro, RNAp binds to them with a probability determined by RNAp 
binding energy. The idea that RNAp first binds to OR1 and OR2, followed 
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by blocking CI and Cro binding, is excluded based on the assumption 
that only CI and Cro controls the regulatory behavior. In addition to 
experimental observation, this assumption is justifiable if the time scale 
associated with CI and Cro binding is shorter than the RNAp binding. 
Except for an overall constant, which we include into the rate of tran-
scription, the RNAp binding is no longer relevant. We therefore take 
it out of the expression pR(s). The total number of states is reduced 
to 27. This simplification was first used by Aurell and Sneppen (59). We 
will drop the subscript R for binding probability pR. We should point out 

Table 1. The 40 configurations corresponding to right operator.
State PRM OR3 OR2 OR1 PR i(s) j(s) k(s)

1      0 0 0
2    R2  1 0 0
3   R2   1 0 0
4  R2    1 0 0
5   R2 R2  2 0 0
6  R2 R2   2 0 0
7  R2  R2  2 0 0
8  R2 R2 R2  3 0 0
9    C2  0 1 0

10   C2   0 1 0
11  C2    0 1 0
12   C2 C2  0 2 0
13  C2 C2   0 2 0
14  C2  C2  0 2 0
15  C2 C2 C2  0 3 0
16   C2 R2  1 1 0
17  C2  R2  1 1 0
18  C2 C2 R2  1 2 0
19  C2 R2   1 1 0
20   R C2  1 1 0
21  C2 R2 C2  1 2 0
22  R2 C2   1 1 0
23  R2  C2  1 1 0
24  R2 C2 C2  1 2 0
25  C2 R2 R2  2 1 0
26  R2 C2 R2  2 1 0
27  R2 R2 C2  2 1 0
28     RNAP 1 0 1
29  R2  RNAP 1 0 1
30  C2  RNAP 0 1 1
31 RNAP  R2   1 0 1
32 RNAP  R2 R2  2 0 1
33 RNAP  R2 C2  1 1 1
34 RNAP     0 0 1
35 RNAP   R2  1 0 1
36 RNAP   C2  0 1 1
37 RNAP  C2   0 1 1
38 RNAP  C2 R2  1 1 1
39 RNAP  C2 C2  0 2 1
40 RNAP    RNAP 0 0 2
R2 stands for CI (λ repressor) dimer and C2 for Cro dimer.
(Sources: Darling et al. (74), Ackers et al. (75), Capp et al. (76))
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Table 2. Parameters used in the modeling.
RT  0.617  kcal/mol
Effective bacterial volume  0.7 ¥ 10-15 l
Ecro  20
EcI  1
TRM 0.115/s
TRM

u 0.0105/s
TR 0.30/s
tCI 2.9 ¥ 103  s
tCro 5.2 ¥ 103  s
Converting factor between protein number and  1.5 ¥ 10-11

concentration
in vitro free energy differences for wild-type l
DG (001) -12.5  kcal/mol
DG (010) -10.5  kcal/mol
DG (100)  -9.5  kcal/mol
DG (011) -25.7  kcal/mol
DG (110) -22.0  kcal/mol
DG (111) -35.4  kcal/mol
DG (002) -14.4  kcal/mol
DG (020) -13.1  kcal/mol
DG (200) -15.5  kcal/mol
DG(cooperative) -2.7  kcal/mol
dimerization energy
DGCI2

DGCro2 -11.1  kcal/mol
-7.0  kcal/mol

in vitro free energy differences for OR3¢ binding
DG (100) -10.5  kcal/mol
DG (200) -13.7  kcal/mol

in vivo free energy differences—in vitro free energy differences
DGCI -2.5  kcal/mol
DGCro -4.0  kcal/mol
DG (cooperative)  -3.7  kcal/mol
CI dimer affinities to OR1, OR2, and OR3 are from Darling et al. (73,74). Cro dimer affinities
to OR1 and OR2 are from Takeda et al. (69,79), Jana et al. (71), Kim et al. (70), and Aurell 
et al. (67). The CI dimerization energy is taken from Koblan and Ackers (80), Cro dimer-
ization energy from Jana et al. (71,72). The bacterial volume is taken from Bremmer and 
Dennis (99). ECI and ECro are taken from Shean and Gottesman (100), Ringquist et al.
(101), and Kennell and Riezman (102). The in vitro parameters have been summarized by 
Aurell et al. (67), which we largely follow. However, we here point out two differences: (a) 
our effective bacterial volume, estimating from the typical size of the bacterium, assuming 
a tube of about 0.7  μm in diameter and 2  μm in length, is approximately a factor 3 smaller; 
and (b) the normalization factor for the concentrations, calculated against the number of 
water molecules, is approximately a factor of 60 smaller. The difference between in vivo
and in vitro values is consistent with qualitative experimental observation (8). The wild-
type data (9) is used to determine the in vivo and in vitro difference.

that previous experimental and theoretical results had been concisely 
reviewed by Aurell et al. (67), whose convention we shall follow.

The dimer and monomer concentrations are determined by the forma-
tion and de-association of dimers, which gives the relation of dimer 
concentration to the total concentration of proteins as follows:
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[CI] =  [NCI]/2 + exp(ΔGCI/RT)/8 − ([NCI]exp(ΔGCI/RT)/8
+ exp(2ΔGCI/RT)/64)1/2 (2)

Here, ΔGCI = −11.1 kcal/mol is the dimer association free energy for CI.
A similar expression for [Cro] is as follows:

[Cro] =  [NCro]/2 + exp(ΔGcro/RT)/8 − ([NCro]exp(ΔGCroT)/8
+ exp(2ΔGCroT)/64)1/2. (3)

Here, ΔGCro = −7 kcal/mol is the dimer association free energy for Cro. 
[NCI] and [NCro] are the monomer concentrations of CI and Cro, 
respectively.

CI and Cro are produced from mRNA transcripts of CI and Cro, which 
are initiated from promotor sites PRM and PR. The rate of transcription 
initiation from PRM when stimulated by CI bound to OR2 is denoted TRM,
and when not stimulated it is denoted TRM

u . The number of CI molecules 
produced per transcript is EcI. The overall expected rate of CI production 
is as follows:

 fCI(NCI, NCro) =  TRMEcI[p(010) + p(011) + p(012)]
+ TRM

u EcI[p(000) + p(001) + p(002)
+ p(020) + p(021) + p(022)]. (4)

Here, NCI and NCro are the protein numbers for CI and Cro inside the 
bacterium respectively. The converting factor between the protein 
concentration and the corresponding protein inside the bacterium is 
listed in Table 2. Similarly, the overall expected rate of Cro production 
is

 fCro(NCI, NCro) = TREcro[p(000) + p(100) + p(200)]. (5)

We use TRM, EcI, Ecro, and TRM
u from Aurell and Sneppen (59), which were 

deduced from the resulting protein numbers in lysogenic and lytic 
states.

The free energies ΔG(s) are determined from in vitro studies, that is, 
they are obtained outside of the living bacterium. The in vivo conditions,
inside a living bacterium, could be different. The measured protein–DNA 
affinities could sensitively depend on the ions present in the buffer solu-
tions, as well as other factors. This observation will be important in our 
comparison between theoretical results and experimental data. On the 
other hand, the in vivo effects of such changes should be compensated 
for, e.g., changed KCl concentrations are attributable to putrescine (76), 
other ions, and crowding effects (77). We note that Record et al. (77) 
already observed that there may exist a significant difference between 
in vivo and in vitro molecular parameters. The data quoted in Darling 
et al., (73,74) was obtained at KCl concentration of 200 mM, which 
resembles in vivo conditions. Therefore, though we expect a difference 
between the in vivo and in vitro data, the difference may not be large, 
typically within 20%–30% of the in vitro values.

The mathematical model that describes the genetic regulation in 
Figure 2 is a set of coupled equations for the time rate of change of 
numbers of CI and Cro in a cell (57):
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dNCI(t)/dt = FCI(NCI(t), NCro(t))

dNCro(t)/dt = FCro(NCI(t), NCro(t)), (6)

where the net production rates are

 FCI = fCI(NCI, NCro) − NCI/τCI

 FCro = fCro(NCI, NCro) − NCro/τCro. (7)

Equations (6) and (7) represent the minimum deterministic model. 
Here, dN/dt is the rate N changes. The production terms fCI and fCro are
functions of CI and Cro numbers in the bacterium. With no Cro in 
the system, the curve of fCI versus CI number has been experimentally 
measured (78). As reviewed in Aurell et al. (67) these measurements 
are consistent with the best available data on protein–DNA affinities
(69,70,79), dimerization constants (80), initiation rates of transcriptions 
of the genes, and the efficiency of translation of the mRNA transcripts 
into protein molecules. The decay constant τCI is an effective lifetime, 
proportional to the bacterial lifetime, as CI molecules are not actively 
degraded in lysogeny, whereas τCro is approximately 30% smaller 
(81). We comment that there is considerably more experimental uncer-
tainty in the binding of Cro, both to other Cro and to DNA, than 
the binding of CI; e.g., the work of Darling et al. (73,74). As a minimal 
mathematical model of the switch, we take τCI and τCro from data and 
deduce fCI and fCro at a nonzero number of both CI and Cro with a stan-
dard set of assumed values of all binding constants, which are summa-
rized by Aurell et al. (67) and are adopted here (Table 2, with differences 
in cell volume and converting factor, as well as the in vivo and in vitro
differences).

3.3. Positive and Negative Feedbacks: In Vivo versus In Vitro

Both positive and negative feedbacks are employed in this genetic switch. 
For CI (Cro), it has a positive feedback effect on itself and a negative 
feedback effect on the production of Cro (CI) (8). Evidently, these feed-
backs are systems effects; breaking them down into disintegrated parts 
would cause the feedback effects to disappear. They emerge only when 
a proper integration is done. Such a systems effect is well known in 
engineering (82).

In establishing the minimum deterministic model, another major 
implicit assumption is on the time scales. We have assumed that the 
dimerization process is a fast process on the scale of Cro and CI produc-
tion, and hence can be treated as algebraic constraints. The dimerization 
has been subjected to continuous experimental (83) and theoretical (84) 
studies. It was concluded by in vitro experiments (83) that the Cro dimer-
ization is slower than that of CI. Nevertheless, the Cro dimerization time 
is on the order of fractions of a minute (83), which is much smaller than 
the typical time, on the order of 20 min, used in our modeling (Table 2). 
We may be able to apply the useful quasi–steady-state approximation 
(85). Thus, the algebraic constraints appear to be a reasonable assump-
tion for such a minimum modeling as that used in previous works 
(9,59,64,67). Other cellular processes have also been implicitly assumed 
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to be fast. All their residual effects will be treated as extrinsic stochastic 
effect contribution, and will be incorporated into the minimum modeling 
in the name of intrinsic versus extrinsic noises, which will be discussed 
in the following sections.

We further specify the meaning of minimum deterministic modeling. 
First, such a model should be viewed as what the system might be, not 
as what it must be. Many features are not explicitly contained in it, such 
as the nonspecific binding (86) and the looping (87,88). The nonspecific
binding was already demonstrated not to be crucial, but the looping may 
well be, which we will come back to later. Nevertheless, we point out that 
by assuming the minimum deterministic modeling, we tentatively and 
tactically assume it has captured all the essential features of the λ switch 
by aggregating molecular processes around it. In doing so, it suggests 
another understanding of the difference between in vivo and in vitro; all 
the parameters we adopted from in vitro measurement would indeed 
take a different value in vivo, because there exist numerous other bio-
logical processes inside the cell that contribute to this difference. If the 
minimum model is essentially correct, it should be able to account for 
experimental data in a quantitative manner, along with predictions that 
need to be further tested. We will show that we have indeed achieved 
this goal after several decades of theoretical efforts.

4. Stochastic Dynamical Modeling

4.1. Minimum Quantitative Model

Stochasticity is ubiquitous in biology. For this modeling, it is particularly 
easy to motivate it. If the numbers of CI and Cro were macroscopically 
large, then equation (1) would be an entirely accurate description of the 
dynamics, because the fluctuation in numbers is an order of N1/2 and the 
correction is an order of 1/N1/2, which would be negligibly small when N 
was very large. However, the numbers are only in the range of hundreds. 
Hence, the fluctuation is not negligible. The actual protein production 
process is influenced by many chance events, such as the time it takes for 
a CI or a Cro in solution to find a free operator site, or the time it takes 
an RNA polymerase molecule to find and attach itself to an available 
promoter, suggesting more stochastic sources. As a minimal model of the 
network with finite N noise, we therefore consider the following system 
of two coupled stochastic differential equations, with two independent 
standard Gaussian and white noise sources:

dNCI/dt = FCI + ζCI(t)

    dNCro/dt = FCro + ζCro(t) (8)

We further assume that the means of the noise terms are zero, i.e., 
�ζCI(t)� = �ζCro(t)� = 0, with the variance

 �ζCI(t)ζCI(t′)� = 2DCIδ(t − t′)

 �ζCro(t)ζCro(t′)� = 2DCroδ(t − t′)

 �ζCI(t)ζCro(t′)� = 0 (9)
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Equations (8) and (9) consist of the present minimum quantitative model. 
Here, the symbol <  .  .  .  > denotes the average over noise. Equation (9) 
defines a 2 × 2 diffusion matrix D. The noise strength may contain con-
tributions from the production and decay rates, assuming each is domi-
nated by one single independent reaction, as used by Aurell and Sneppen 
(59). Such a noise may be called the “intrinsic” noise. Other noise sources, 
“extrinsic” noises, also exist (89–92). We treat the noise to incorporate 
both intrinsic and extrinsic sources: All are assumed to be Gaussian and 
white. The consistency of this assumption should be tested experimen-
tally, as we will do in the following paragraphs. Certain probability events, 
however, may not behave as Gaussian and white in the present context 
of modeling, which can be determined by separate biological experi-
ments, such as the pRM240 mutation (9) to be discussed later in the 
text.

It has been demonstrated (61–63) that there exists a unique decom-
position, such that the stochastic differential equation, equation (8), can 
be transformed into the following form, the four dynamical element 
structure:

 [L(N) + W(N)]dN/dt = −∇U(N) + ξ(t), (10)

with the semipositive definite symmetric 2 × 2 matrix L defining the 
dissipation (degradation), the antisymmetric 2 × 2 matrix W defining the 
transverse force, the single-valued function U defining the potential land-
scape, and the noise vector ξ(t), and the two-dimensional vectors:

 Nτ = (NCI, NCro);

 ∇ = (∂/∂NCI, ∂/∂NCro);

 ξτ = (ξCI, ξCro), (11)

Here, τ means the transpose of the vector. The connection between the 
noise ξ and the matrix L is similar to that of ζ and D of equation (9):

 �ξ(t)� = 0

 �ξCI(t)ξCI(t′)� = 2LCIδ(t − t′)

 �ξCro(t)ξCro(t′)� = 2LCroδ(t − t′)

 �ξCI(t)ξCro(t′)� = 0 (12)

The decomposition from equations (8) and (9) to equation (10) and (12) 
is determined by the following set of equations:

 ∇ × [(L + W)F] = 0 (13)

 (L + W)D(L − W) = L. (14)

One may solve for L, W in terms of F = (FCI, FCro)τ and D from equa-
tions (13) and (14). Indeed, this can be formally done. Once L and W are
known, the requirement that equation (10) can be reduced to equation 
(8) gives (L + W) F = −∇U(N), which is used to obtain U. In general, this 
decomposition is an involved mathematical and numerical endeavor. 
Further simplification follows from the simplification of friction matrix. 
Typically, the diffusion matrix D is unknown biologically. There are not 
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enough measurements to fix the noise explicitly. Therefore, we may treat 
the semipositive, definite symmetric matrix L as parameters to be deter-
mined experimentally. In our calculation, we assume that D is a diagonal 
matrix. Following from equation (14), L is a diagonal matrix for 
two-dimensional case. The experimentally measured fraction of recA−1

lysogens that have switched to lytic state is used to determine the 
elements of L.

Here, we would like to give an intuitive interpretation of the mathe-
matical procedure. Equation (8) corresponds to the dynamics of a ficti-
tious massless particle moving in two-dimensional space formed by the 
two protein numbers NCI and NCro, with both deterministic and random 
forces. It is easy to check that, in general, ∇ × F(r) ≠ 0 and ∇ ·F(r) ≠ 0.
Therefore, F(r) cannot be simply represented by the gradient of a scalar 
potential, due to both the force transverse to the direction of motion and 
force of friction. The simplest case in two-dimensional motion when both 
transverse force and friction exist is an electrically charged particle 
moving in the presence of both magnetic and electric fields, which is 
precisely in the form of equation (10).

Proceeding from equation (10), we note that we may interpret the 
semi-positive definite symmetric L matrix as the friction matrix, and the 
antisymmetric matrix W as the result of a “magnetic” field. The friction 
matrix represents the dissipation in physics. It is analogous to the degra-
dation in biology. The scalar function U takes the role of a potential 
function, which would determine the final steady distribution of the 
phage. The global equilibrium will be reached when the final distribution 
function is given by

ρ N N exp U dN dN UCI Cro CI Cro, exp .( ) = − ( )( ) −( )∫ ∫N (15)

The potential U, the landscape of the system, is depicted in Figure 3 (cf
Figure 5).

The phage sees two minima and one saddle point in the potential 
landscape. Those two minima correspond to the lytic and lysogenic states. 
Once the phage is at one of the minimum, the probability rate for it to 
move into another minimum is given by the Kramers rate formula in the 
form (93,94):

P = ω0 exp(−ΔUb) (16)

with the potential barrier height ΔUb = (Usaddle − Uinitial minimum), the differ-
ence in potential between the saddle point and the initial minimum, and 
the time scale, the attempt frequency ν0, determined by the friction, the 
curvatures of potential and values of transverse force around the saddle 
and the local minimum. We remark here that the attempt frequency is, 
in general, a complicated function of dynamical quantities in equation 
(10). Its form will be determined empirically in this chapter. We refer 
readers to Hanggi et al. (94) for the general mathematical discussions.

4.2. Stochastic Dynamical Structure Analysis

Equation (10) gives the dynamical structure of the gene regulatory 
network in terms of its four dynamical components: the friction, the 
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potential gradient of the driving force, the transverse force, and the sto-
chastic force. Such a dynamical structural classification serves two main 
purposes. It provides a concise description for the main features of the 
genetic switch by itself and it provides a quantitative measure to compare 
different gene regulatory networks, for instance, between the wild phage 
and its mutant. Such an analysis of experimental data based on equation 
(10) will be tentatively named the dynamical structure analysis.

The potential may be interpreted as the landscape map of the phage 
development. Each of the epigenetic states is represented by a potential 
minimum and its surrounding area forms an attractive basin (Figure 3). 
The dissipation represented by the friction gives rise to the adaptivity of 
the phage in the landscape defined by the potential. The phage always 
has the tendency to approach the bottom of the nearby attractive basin. 
The potential change near the minimum, together with the friction, gives 
the time scale of relaxation: The time it takes to reach equilibrium 
after the epigenetic state is perturbed. Once we know the friction and 
the potential around the minimum, we have a good grasp of the relax-
ation time, τ = η/U″; here η is the strength of friction and U″ is the second 
derivative of potential, both in one-dimensional approximation along a 
relevant axis. The relaxation time is independent of the amplitude of the 
perturbation near the potential minimum when U″ is a constant.

Two remarks are in order here. First, the meaning of friction matrix is 
the same as in mechanics; if there is no external driving force, the system 
tends to stop at its nearby minimal position. The closest corresponding 

Ub

Figure 3. Illustration of the dynamical structure of a genetic switch. The dynamic 
state of the network is represented by a particle whose position is given by 
instantaneous protein numbers. The potential function maps a landscape in the 
protein number space. For a genetic switch, there are two potential minima cor-
responding to two epigenetic states. The area around each of the minima forms 
the attractive basin. The state of the network always tends to relax to one of the 
minima. The fluctuation may bring the network from one minimum to another 
with a rate given by Kramers rate formula (93,94).
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concept in biology is “degradation.” There is always a natural protein 
state under given conditions. Second, it turns out that the transverse 
force is not a dominant factor in the present switch-like behavior. 
However, its existence is the necessary condition for oscillatory biologi-
cal behaviors, which will not be discussed further in this chapter.

Another time scale provided by the potential is the lifetime of the 
epigenetic state, which is given by the Kramers rate formula, equation 
(16), through the potential barrier height. Such a scale measures the 
stability of the epigenetic state in the presence of a fluctuating environ-
ment. In the case of phage λ, the lifetime for the lysogenic state is very 
long, unless the phage is mutated at its operator sites. When the phage 
is provoked, the height of the potential barrier separating lysogenic and 
lytic states is reduced. The lifetime of the lysogenic state is drastically 
reduced because of its exponential dependence on the barrier height and 
switching takes place. Looking at it from a different angle, the stochastic 
force gives the phage ability to search around the potential landscape by 
passing through saddle points, and it drives the switching event. The 
Kramers rate formula is a quantitative measure of this optimization 
ability.

5. Quantitative Comparison Between Theory 
and Experiment

5.1. Determining In Vivo Parameters

First, we need to decide the free energies to be used in the theoretical 
model. Without exception, all the binding energies measured so far for 
phage λ are determined from in vitro studies. The difference between the 
in vivo condition and the in vitro condition could include the ion con-
centration in the buffer solutions and the spatial configuration of the 
genomic DNA, for instance, looping (95–97). The relative large change 
of the cooperative energy from in vitro to in vivo in Table 1 may be partly 
due to the looping effect, though there is no direct consideration of 
looping in the present model. We note that in the in vivo conditions, all 
the operators are in the same kind of environment, including the ion 
condition and the DNA configuration. The reason for the latter is that 
the operators are located close to each other in the genome. If there is 
a bending of the genomic DNA that increases or decreases DNA–protein 
bindings, these closely located and short operator sites will most likely 
experience the same amount of change. Therefore, we assume that 
in addition to the in vitro DNA–protein binding energy, overall 
binding energy differences are added to all the CI and Cro protein 
respectively:

in vivo binding energy for CI (Cro) = in vivo binding energy for CI 
+ ΔGCI(ΔGCro).

To determine ΔGCI(ΔGCro), we need more experimental input than the 
in vitro measurement. To avoid unnecessary uncertainty in the model, 
we try to include a minimal number of parameters. The cooperative 
binding between two CI dimers is included. The cooperative bindings 
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between two Cro dimers, between CI and Cro dimers, the unspecific CI 
and Cro bindings are not included. Our later calculation verifies that CI 
cooperative binding is essential to the genetic switch properties, while 
the bindings we ignore do not have significant influence on the calculated 
results. There are three parameters we need to adjust: the difference 
between in vivo and in vivo binding energy for CI (ΔGCI), for Cro (ΔGCro)
and for the cooperativity of CI dimers (ΔG(cooperative)). We first use 
the CI numbers of both wild-type and mutant λOR121 to determine ΔGCI,
then we determine ΔG(cooperative) and ΔGCro by requiring that both 
the lytic and lysogenic states of wild type are equally stable, calculated 
from Kramers rate formula. The adjusted in vivo binding energies and 
other parameters we use for the modeling are given in Table 1. Using 
these adjusted parameters, the robustness of the phage’s genetic switch 
is reproduced (shown in Figure 4).

The mutant λOR3′23′ studied by Little et al. (66) was characterized by 
Hochschild et al. (98) for binding to OR3′. To produce the desired protein 
level, we found that the binding energy between OR3′ and Cro protein 
is 1.8 kcal/mol smaller than that of the OR3 and Cro protein, which is 
consistent with the result of Hochschild et al. The CI binding energy from 
OR3 to OR3′ is slightly increased, 1 kcal/mol, which is also consistent with 
the measurement.

We assume that friction matrix λ is a diagonal constant matrix. Similar 
to Aurell and Sneppen (59), we assume the stochastic fluctuations in 
equation (2) scale with the square root of protein number divided by 
relaxation time: DCI = Const × τCI/NCI,lysogen, and DCro = Const × τCro/NCro,lysis,
where NCI,lysogen is the CI number at the lysogenic state and NCro,lysis is the 
Cro number at the lytic state. The constant is to be determined by 
experiments. In equation (7), we note that if the antisymmetric matrix W
is small, that is, |det (W)| << det(L), then L is the inverse of D. We calcu-
late W assuming L = D−1 and find that, indeed, in the regions of concern, 
i.e., the potential valley connecting two potential minima through the 
saddle points, W is negligible. The final parameters we have used are

L11 = 0.056 × τCI/NCI,lysogen

 L22 = 0.040 × τCro/NCro,lysis. (17)

5.2. Stochastic Dynamical Structure Analysis of l Switch

The original problem, described by equation (8), may be interpreted as 
a set of two-dimensional differential equations describing a particle 
motion, if we view the protein number NCI and NCro as the coordinates 
and the particle position to be (NCI(t) NCro(t)) at time t. There is a deter-
ministic force Fτ = (FCI, FCro) and a stochastic force acting on such a 
particle. The deterministic force has the characteristics of a friction, a 
potential force, and a transverse force at the same time. The decomposi-
tion we have discussed earlier, equation (10) allows us to separate these 
components. We discuss them here.

The wild-type phage λ and some of its mutants sees two minima and 
one saddle point in the potential energy landscape (Figure 5). Those two 
minima correspond to the lytic and lysogenic states (cf Figure 3). The 
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Figure 4. Lines of d<NCI
>/dt = 0 (solid) and d<NCro

>/dt = 0 (dashed). Here, <> is
the average to stochastic force, for (a) the wild-type phage, λOR321, with param-
eters taken directly from in vitro measurement, and (b) the wild-type phage with 
parameters adjusted allowing in vivo and in vitro differences. For mutants λOR121
λOR323, see Zhu et al. (9). For b, these two lines have three intersections. These 
three fixed point in equation (2) coincide with the potential extrema, minima, 
and saddle point in equation (10).
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Figure 5. The potential U of wild-type phage plotted on a logarithmic scale 
(a) and as a contour map (b). There are two potential minima corresponding to 
the lysogenic and lytic states. Connecting these two states is a narrow potential 
valley. The highest point along this valley is the saddle point. The most probable 
state of the phage is at either of the potential minima. The fluctuation may bring 
the phage from the original potential minimum, moving along the valley and 
across the saddle point to reach another potential minimum. The rate for such a 
switching event is given by the Kramers rate formula.
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positions of the potential minima give the average protein number for 
the lytic and lysogenic states. There is a relatively narrow valley connect-
ing these two minima. The highest point along this valley is the saddle 
point. Because the areas with large potential are not easily accessible 
and the low-lying potential region forms a valley, we may visualize the 
potential along the valley and illustrate it in a one-dimensional graph, as 
shown in Figures 3 and 6.

The antisymmetric matrix W may be represented by a single scalar, B, 
along the z direction WF = Bz × F, assuming x = NCI, y = NCro. The trans-
verse field B for the wild type is obtained by numerically solving equa-
tion (13). This field is small except at the region along two axes. Along 
the two axes, the transverse B field has no effect because the motion is 
guided by the steep potential to a valley. Once the phage evolves away 
from origin, when both CI and Cro number are small, in the later devel-
opment the transverse force may be taken out of the equation (10) 
without changing the dynamics of the phage. In both the calculation of 
the relaxation time and the lifetime of lysogenic state, we may ignore the 
transverse force for the above reason.

The protein number distributions of Cro and CI have also been cal-
culated by Zhu et al. (9). We refer readers there for details, as well as for 
the analysis of other quantities, such as the robustness and stability.

5.3. Switch Efficiency

Efficiency is an important feature that, so far, has received relatively less 
attention in literature. We present the discussion in some detail here.

The analysis of robustness of phage λ genetic switch demonstrates that 
its epigenetic states are stable against the variations in parameters and 
robust against major changes in terms of mutations. Then how does the 
switching take place? From the theoretical point of view, there are two 
channels that the phage can be induced from lysogenic growth to lytic 
growth. In reality, phage seems to use both of these strategies. For clarity, 
we begin by discussing these two channels separately.

The first channel of induction is to increase the noise level of CI 
protein number, while keeping all the other conditions intact. Mathemat-
ically, it means to increase ζCI in equation (8) and DCI in equation (9), 
while keeping all the other terms in equation (8) and equation (9) 
unchanged. The friction matrix L is changed through the decomposition 
procedure. As a result, the potential energy U is also changed. Therefore, 
for a different noise level, the phage moves in a different potential land-
scape. Such a change of noise level has a drastic effect. It changes the 
minima of the potential well of lysogens by making it shallower. As a 
good approximation, the barrier height of the lysogen potential well 
scales inversely with the noise strength. Doubling the noise level reduces 
the potential barrier by half. As a result, the increased noise level drasti-
cally decreases the lifetime of the lysogenic state, as shown in Figure 6. 
The lifetime of the lytic state, on the other hand, remains unchanged. The 
combination of these two changes in the potential landscape brings the 
phage to lytic growth efficiently.
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The second channel is through the deterministic terms in equation (8). 
For the deterministic terms, e.g., introducing CI monomer cleavage is 
equivalent to substitute NCI in equation (8) with αNCI, α is a factor that 
represents cleavage strength. If α is smaller than 0.02, we find that lyso-
genic state is no longer stable, i.e., no longer a potential minima. The 
interpretation of such a small α is that almost every CI monomer is 
cleaved. If α is small, let’s say 0.1, meaning 90% CI monomers are 
cleaved, the lysogenic state is still stable, with a lifetime almost unchanged. 
Apparently, a uniform CI cleavage alone without introducing extra noise 
to CI levels is not an efficient way for induction.

Phage may have used both of these two channels. The second channel 
is obviously used because RecA cleaves CI monomers. The strong indica-
tion that the first channel is also used comes from the observations that 
without external stimulus, the recA+ phage shows a much shorter lifetime 
for the lysogenic state compared to recA− phage. Such a significant reduc-
tion of lysogen lifetime without activating RecA proteins on an observ-
able scale can be explained by doubling of the CI noise level. Figure 6 
gives schematic explanations of the switching process.

In the early work by Shea and Ackers (48), stochastic effect was not 
included. In their model, even a shallow lysogenic potential minimum 
would confine the phage to continue growing in lysogenic state. Switch-
ing happens only when the lysogenic potential minimum disappears 
completely. For the parameters they used, they found that when 20% of 

(A) (B)

Figure 6. (A) Illustration of the switching mechanism from the current work. 
Before switching, the phage grows in lysogenic state. The potential barrier sepa-
rating the lysogenic state and the lytic state is high. When recA is activated, this 
barrier is lowered. The lifetime of lysogenic state reduces drastically, and the 
phage switches to lytic state. (B) Switching mechanism of Shea and Ackers (48). 
In their work, fluctuation was not included. Switching was possible only when 
the lysogenic state is no longer a potential minimum. When stochastic effect is 
included, the switching happens when the lysogenic potential minimum becomes 
too shallow to confine fluctuation.
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CI monomers were cleaved, such a switch would happen. As pointed out 
by Aurell et al. (67), in these early works, the genetic switch modeling 
results do not show the observed robustness. After we require that the 
genetic switch should demonstrate the observed robustness, the dis-
appearance of the lysogenic potential minimum is pushed down to 2%. 
However, the actual switching happens before the disappearance of 
lysogen potential minimum, when the lysogen potential minimum is too 
shallow to confine the fluctuations. If 10% of CI monomer is cleaved, 
at least we expect a 10-fold increase in DCI due to the reduced CI 
monomer numbers. The potential barrier for the lysogenic state reduces 
to less than 1, and therefore becomes too shallow to allow continual 
lysogenic growth.

5.4. Quantitative Comparison with the Experiment of Little et al.

We summarize the calculation results related to the measurements of 
Little et al. (66) in Table 3 because their data are most up-to-date and 
systematic. In their experiment, they measured the free phage per lyso-
genic cell for both recA+ and recA− phage, but did not convert the recA+

into fraction of lysogens that switched to the lytic state. If we assume 
the burst size for both the recA+ and the recA− phage are similar, our 
calculation for the RecA+ protein agrees with their measurements 
quantitatively.

In Table 3, the bistability of the gene switch in phage λ is assumed, and 
the protein levels in the lytic state are calculated. This is, of course, not 
the case for the wild type, hence, it posits a question to test the calculated 
Cro level experimentally. One way to realize the bistability may be by 
suppressing the lyses, achieving the so-called antiimmune phenotype 
(103,104).

As discussed in section 4 of the formulation of the present stochastic 
model, we have made the simplified assumption of treating all chance or 
probability events as Gaussian white noise. This assumption affects two 
testable biological quantities: the lifetime of lysogenic state (equation 

Table 3. Comparison between the calculation and the experimental data 
(in parentheses) of Little et al. (66).

Switching Switching
frequency to lytic frequency to

Relative CI  state (recA-) lytic state
level in lysogen Relative Cro per minute (recA+) per

Phage Theoretical level in lysis Theoretical minute
genotype (experimental) Theoretical (experimental*)) Theoretical

l+ 100% (100%) 100% 1 ¥ 10-9 (2 ¥ 10-9) 1 ¥ 10-5

lOR121  20% (25–30%) 100% 3 ¥ 10-6 (3 ¥ 10-6) 3 ¥ 10-5

lOR323  70% (60–75%)  70% 7 ¥ 10-5 (2 ¥ 10-5) 1 ¥ 10-4

lOR3¢23¢ 50% (50–60%) 130% 1 ¥ 10-7 (5 ¥ 10-7) 2 ¥ 10-5

Here, *) indicates that the estimated wild-type data (9) is used. The wild-type biological 
data were used to find out the difference between in vivo and in vitro molecular parameters, 
as listed in Table 1. The relative CI level and switch rate of λOR121 were used to fine-tune
parameters. Rest of theoretical entries are then calculated directly from our model.
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[16]), and the shape of CI number distribution in lysogenic state (equa-
tion [15] and Figure 7). Simultaneous measuring of both can be used as 
a consistent check to the Gaussian white noise assumption. For example, 
we have treated the effect of recA+ to switching dynamics as that of a 
Gaussian white noise to simplify our calculation, in the same reasoning 
of minimal modeling approach in this chapter. In fact, we have assumed 
that with recA+, the total noise strength doubles. Using this assumption, 
we calculated the lytic switching rates, represented by the last column of 
Table 3. The CI distribution with recA+ should be twice as broad as in 
the case with recA−. Both results are subject to further experimental 
testing.

There may be some chance events that cannot be treated as Gaussian 
white noise in the present formulation. One example has been already 
suggested in biological experiments (9), the pRM240 mutation, which 
greatly weakens the promoter, and therefore the ability to produce CI 
as well. This mutation makes the lysogens barely stable, and is estimated 
to be responsible for at least 99% of observed lytic switching in the wild 
type. We have used this input for both Tables 2 and 3. We have recalcu-
lated the switching rates to lytic state of all strands, assuming the same 
minimal model, with the same forms of functions for the switching rate, 
but with the previous experimental data (66). The switching rates obtained 
in this way are: wild type(λ+), 2 × 10−7; λOR121, λOR2 × 10−6; λOR323, 7 ×
10−5; and λOR3′23′, 5 × 10−7. Indeed, the stability of the wild type decreases 
by more than 2 orders of magnitude. The overall noise strength is 
increased by 60% for the wild type, resulting in a broader CI distribution 
in the lysogenic state. There is no appreciable change in other quantities, 
such as the protein level. The only noticeable overall change in molecular 
parameters is the in vivo cooperative energy, from −6.4 kcal/mol to 
−6.7 kcal/mol. A good overall quantitative agreement exists between 
modeling and experiment.

It is a fact that any mathematical modeling in natural science should 
have empirical input to completely fix its mathematical structure. For the 
modeling of phage λ, there is an already large body of molecular data, 
which enables us to nearly pin down our model. The additional freedom 
in our parameters is fixed by data from wild type, such as the switching 
frequency. Above the less-than-expected sensitivity of our mathematical 
structure to this frequency that a few percentage of change in molecular 
parameters can result in 2 orders of magnitude of change in frequency 
is a remarkable demonstration of the internal consistency of our model-
ing. It demonstrates that the switching is exponentially sensitive to some 
molecular parameters. In addition to more theoretical effort to go beyond 
our present minimal modeling, it is clear that more experiments are 
needed in this direction to test the present model: The precise in vivo
molecular parameters and the distributions and time-correlation of 
protein numbers in our model should be viewed as predictions.

5.5. Experimental Determination of Dynamical Elements

We have introduced four dynamical quantities for a gene regulatory 
network: friction, potential, the transverse force, and the stochastic force. 
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The friction and the strength of the stochastic force are related. For the 
genetic switch, the transverse force is irrelevant to the dynamic proper-
ties. Therefore, the two crucial quantities for a genetic switch are the 
friction and the potential. Those quantities can be calculated from the 
more microscopic modeling with molecular parameters. The present 
quantitative success lies in the allowance of the in vivo and in vitro dif-
ferences, and of various noise contributions. However, those four quanti-
ties may be directly determined biologically.

There are three different types of experimental data to determine the 
dynamical elements of the local potential function for a genetic switch, 
the degradation (the friction in physical sciences), and the barrier height 
(Figure 7). The first type is the protein distribution around each of the 
epigenetic states. It is given mathematically by

 ρ(N) = ρ0 exp(−U(N)), (18)

where ρ0 is a normalization constant. The protein distribution is expli -
citly measurable. Once ρ(N) is measured experimentally, the local 
potential U(N) near the potential minima can be determined as: U(N)
= −ln (ρ(N)) + ln (ρ0).

The second type of experimental data is the relaxation time, a measure 
of how long it would take the system to return to its local equilibrium 
after a small perturbation. It is determined by both the potential near 
the minimum and the degradation,

 τ = η/U″. (19)

Here, η is the strength of friction, which gives the friction matrix L along
the path of relaxation. U″ is the second derivative of potential. Because 
potential can be obtained from ρ(N), relaxation time can be used to 
obtain friction: η = τU″.

The third type of experimental data is the lifetime of epigenetic states, 
the measure of the switching rate from one state to another. The proba-
bility of phage evolving from one epigenetic state of growth to another 
is given by the Kramers rate formula, our equation (16), P = ω0 exp(−ΔUb),
where ΔUb is barrier height and ω0 is the attempt frequency. ω0 is given 
by the friction and the curvature of the potential barrier. The curvature 
of the potential is related to the height of the potential barrier and the 
shape of the potential near its minimum. Therefore, ΔUb can be deter-
mined from the lifetime of its epigenetic state: ΔUb = ln(ω0) − ln(P).

The genetic switch for phage λ is a complex dynamical system. It took 
decades of ingenious experimental research and laborious work to collect 
the parameters needed for this mathematical modeling. For a more com-
plicated system, resources and time may limit the ability to study each 
molecular element in detail. A method that is less demanding on the 
details, yet still can capture the main features, is of great interest. Dynam-
ical structure analysis provides guidance to build such a phenomenologi-
cal model, as illustrated in Figure 7.

We emphasize that the quantities introduced in dynamical structure 
theory, the friction, the potential gradient, the transverse force, and the 
stochastic force associating with the friction, are all measurable quantities 
at the given description level. These are quantities similar to temperature, 
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pressure, and free energy in thermodynamics, which can be determined by 
microscopic details, but can also be measured independent of those details. 
Once the relationships between these quantities are established, as shown 
in equation (10), we are ready to write down an effective equation of 
motion for the network without resorting to details.

5.6. Stochasticity, Robustness, Cooperation, and Efficiency

Starting from realization that noise is important in the initiation of tran-
scription in phage λ (58), stochasticity has been increasingly viewed as 
one of the most important elements in the dynamical modeling of bio-
logical processes (105–107). Both the intrinsic and extrinsic noises are 
shown to exist in biological processes and are analyzed theoretically 
(89–92). The parameterization in the form of equation (17) is a way to 
account for both noise contributions.

Robustness has been viewed as one of the central features in biological 
processes (108–110). Numerous recent studies have established its impor-
tance (111–116). Combined with stochasticity, the work reviewed here 
(9,64) established a quantitative criterion, equation (16), for the robust-
ness. The potential landscape function, U(N) in equation (10), which 
emerged from the stochastic dynamics, provides a graphic representation 
of the robustness. Those results, again, confirm the importance of noise.

Potential Barrier
Crossing Time

Relaxation
Time

ρ(N)

Figure 7. Three types of experiments directly probe the dynamical structure of 
a genetic switch and determine the dynamic components. The measurement of 
protein number distribution determines the potential function at each of the 
epigenetic states. The additional information on the relaxation time determines 
the strength of friction. The lifetime of each epigenetic state determines the 
height and shape of the potential barrier.
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Finally, we wish to point out that a complete rigid system, that is, an 
absolute robust system with no flexibility, is not viable from the evolu-
tionary point of view (117,118). Such a structure would not survive the 
stringent evolutionary process. This may be illustrated in the switch effi -
ciency discussed above. It is also implied by the ability of the phage λ to
switch from the lysogenic to lytic state when provoked (8), a feature that 
can be captured based on the present minimum model, though no explicit 
and detailed mathematical analysis has been published yet along this 
direction. Thus, the stochasticity seems to provide the critical link to 
understanding both robustness and flexibility. We believe such a feature 
can, indeed, be understood from the evolutionary point of view (118).

6. Perspective on Mathematical Modeling

6.1. Major Prediction of the Minimum Quantitative Modeling

We have shown that, thanks to continuous theoretical and experimental 
efforts, the minimum quantitative modeling has achieved the status of 
quantitative agreement with experimental biological data. New predic-
tions, such as protein distributions, are made and discussed in Zhu et al. 
(9). There is one prediction on cooperative energy that stands out as an 
excellent indicator for success of both recent theoretical and experimen-
tal efforts.

Since the 1980s, it has been found that it is rather difficult to model 
the stability of the λ switch with known parameter constraints (48,57), 
even allowing the possibility of up to 30% difference between in vivo 
and in vitro parameter values (51). It has been found that the cooperative 
energy would play an important role (119,120). Thus, it has been hypoth-
esized that additional effects beyond the minimum model would be 
needed. One of the most promising ones is a stronger cooperative effect. 
Indeed, independent of theoretical need, an additional effect, the looping, 
has been found experimentally (88,96).

A brief account of this effort may be relevant. Four years ago, four of 
the present authors began a mathematical study on phage λ. Although we 
tried all methods known to us at that time, we could not solve the stability 
puzzle. Effectively, we were in the same situation as that reported by 
Reinitz and Vaisnys and Aurell et al. (57,67). One of the major problems 
for us was that even allowing the possibility to vary the parameter values 
drastically in the name of in vivo and in vitro difference, the parameter 
space appears too big for an effective research. This difficulty was partially 
verified in retrospect in Bakk et al. (51), where the change of parameter 
values appeared too small to explain the “experimental observed robust-
ness” within the minimum quantitative model. Out of this frustration, it 
was realized 3 years ago that one must have an effective quantification 
criterion for stability. It turned out that the landscape idea, rooted deeply 
in both physics and biology, appears to be such a candidate. Driven by this 
need for quantification, a mathematically consistent construction method 
for such a landscape function was quickly discovered. With this new 
method, it was relatively easy to explore bigger parameter space. One 
critical parameter, the cooperative energy, was then found to double its 
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value to have the desired stability, the value in bold face for ΔG(cooperative) 
of −3.7 kcal/mol in Table 2. We note this value is about twice of that tried 
in Bakk et al. (51).

Interestingly, such a value was indeed observed in an independent 
biological experiment (88). In writing this review, we further noticed that 
such a big value was suggested to be possible in an independent theoreti-
cal investigation based on thermodynamic consideration (87). Given all 
of the independent efforts, theoretical (9,87) and experimental (88,96), 
successful (64) and failed (51), the authors believe that such an agree-
ment between the theoretical prediction (64) and experimental value 
(88) on the cooperative energy may not be accidental. It indicates that 
the minimum quantitative model may have, indeed, captured the essen-
tial biological features of this genetic switch, with its first nontrivial and 
verified prediction.

6.2. Relation to Other Modeling Methodologies

There has been a tremendous amount of literature on biomodeling and 
biocomputation. It is impossible to give an adequate survey of various 
methodologies in this chapter. Nevertheless, we would like to present the 
following two classification schemes, according to mathematical and sci-
entific structures, to place our method in a broader context (Figure 8).

From a mathematical point of view, a modeling may be classified
according to whether it is discrete or continuous and whether it is deter-
ministic or stochastic. The classic modeling of deterministic and discrete 
is the Boolean logic circuit (121). The works of Shea and Ackers (48), as 
well as others (57,122,123), are the finest examples of deterministic and 
continuous modeling. Examples of stochastic and continuous modeling 
are Arkin et al. (58) and Aurell and Sneppen (59). Naturally, there are 
methods of combining various features. One such example is the hybrid 
of continuous and discrete modeling of Tchuraev and Galimzyanov 
(124). Of those modeling methods, according to this classification, the 
simplest one is that based on the Boolean logic circuit. It is clearly an 
approximation, but in many cases it serves specific biological purposes 
well. It is, in fact, currently the dominant modeling and presentation 
methodology in biology. The most difficult, but most detailed, modeling 
is the continuous and stochastic formulation. Many of its predictions are 
necessarily probabilistic in nature, corresponding nicely to biological 
phenomena. Our present method belongs to this last category. Neverthe-
less, we should point out that no method would be definitely better than 
the rest. The choice of modeling method must be appropriate to the 
biological questions being addressed.

From the scientific structure point of view, the modeling may be clas-
sified into first principle modeling and completely empirical modeling. 
It is believed that chemical reactions and other physical processes 
lie behind various biological processes. Hence, it should be possible to 
predict biological functions based on the physical-chemical principles. 
This first principle modeling methodology has been followed by Shea 
and Ackers (48), by Reinitz and Vaisnys (57), and by many others 
(58,59,122). Ours is also of this type. The advantages of first principle 
modeling are that it shows the unity of the sciences and that additional 
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insight and information can be obtained from the lower level scientific
descriptions. The evident disadvantage of this modeling, in addition to 
the difficulty of specifying all needed microparameters, is that higher 
level processes often show emerging phenomena. It is difficult to make 
predictions based on the properties of the system’s components. The 
outstanding stability puzzle of phage λ genetic switch (51,59), one of 
the simplest possible living genetic switches, and the enormous effort 
(9,48,51,57–59,67) to quantitatively model its behavior, clearly illustrate 
this situation.

The other extreme, compared with first principle modeling, is to treat 
the system in question autonomously, inferring its properties completely 
from empirical studies. Statistical analysis methods play a dominant role 
in this approach. The advantage of this modeling is that it establishes 
the independent role of the investigating scientific layer. It is consistent 
with the view that at each scientific level autonomous laws can be un -
covered. Equipped with biological insights, it has been employed success-
fully in numerous biological studies. The proposals of Waddington (125) 
on developmental landscape and of Monod and Jacob (126) on gene 

Figure 8. The schematic diagram of modeling methodologies. The coordinates 
are classified according to mathematical descriptions, which define a three-
dimensional space: many degrees of freedom (high dimensions) to few degrees 
of freedom (low dimensions) (x direction); from deterministic to stochastic (y 
direction); and from discrete to continuous (z direction). The broken lines, which 
define a sphere, are classified according to scientific understandings: from first
principles (inside) to statistical methods (outside). Both scientific methodologies 
encompass all mathematical descriptions.
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regulation mechanism are fine examples. In reality, particularly in molec-
ular biology, what is typically encountered is in between those two 
extremes, as demonstrated by the Boolean logic circuit modeling (121) 
and by others (122–124,127). Interestingly, even in the empirical model-
ing setting, we have briefly discussed the direct and transparent connec-
tion of our method to empirical data in subsection 5.5, though it is rooted 
in first principle modeling. This suggests that our method can be used in 
this extreme example, too. Further investigation in this direction should 
be carried out.

The statistical analysis also suggests an important issue in mathemati-
cal modeling: the number of variables and the associated problem of the 
“curse of dimension.” Regarding the matching of data to appropriate 
modeling methodologies, there is another issue of “parsimony of experi-
mental data,” which is particularly acute in real-time modeling at present. 
We will not discuss those issues here.

To summarize the unique characteristics of the present novel method, 
the stochastic dynamical structure analysis, mathematically, is a continuous 
and stochastic formulation with four dynamical elements. In terms of sci-
entific structure, it is equivalent to first principle modeling. Nevertheless, 
it can be directly related to empirical data to establish its autonomy.

6.3. Literature Sampling

First, the book by Ptashne (8) on phage λ is a must read; an excellent 
review on experimental work up to 2004 can be found. Because both the 
λ repressor and the lac operon are instrumental in the current molecular 
and synthetic biological studies, the book by Mulller-Hill (128) is another 
must read. A good summary of earlier study on phage λ can be found in 
Hendrix et al. (129). A broader and recent general review can be found 
in Birge (130).

For a recent phage λ study reviewed from the switch point of view, 
Wegrzyn and Wegrzyn (131) is a good start. Five switches were identified
there for the developmental process. The stability puzzle was put into 
sharp focus in Little et al. (66). Looping study has been theoretically 
studied in Vilar and Leibler (87), and experimentally in Doff et al. (88) 
and Revet et al. (96). The phage was studied from an evolutionary point 
of view in Svenningsen et al. (133). More studies on the role of Cro can 
be found in Jia et al. (83) and Bundschuh et al. (84). More interesting 
dynamical behaviors were reported experimentally in Svenningsen et al. 
(133) and Kobiler et al. (134). The effect of degradation time on stability 
was considered theoretically in Buchler et al. (135). Various other fea-
tures on genetic switch have been recently explored (136–141).

7. Third Age of Phage

Because of its enormous biomass in the biosphere on Earth, the impor-
tance of phage has already been recognized in the current ecological 
study (47,142,143), and the title of this section is borrowed from Mann’s 
study (143). The presentation of theoretical effort in this chapter has 
shown that the phage has been playing an important role in the study of 
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fundamental biology in the post-Human Genomic era, too, along with 
the experimental effort (145).

The quantitative and detailed modeling of gene regulatory networks 
is evidently at its beginning. There are numerical possibilities to go 
beyond the minimal quantitative modeling reviewed here. For example, 
even for the phage λ genetic switch, it is a simplification. It would be 
desirable to have quantitative demonstration on how some of the in vivo
and in vitro differences arise by incorporating more degrees of freedom, 
such as the left operon and what would be the quantitative differences. 
A further extension would be to model all five switches of the λ devel-
opmental processes (131), to obtain a comprehensive quantitative under-
standing of the whole process. Deep biological questions, such as why 
the phage chooses such a structure or what evolution principles guided 
this choice (66,127), have not yet been discussed adequately by any 
measure. Nevertheless, we do wish to point out that the study of phage 
λ genetic switch has revealed a novel mathematical structure (9) and has 
already put one of the deep-rooted concepts in biology, the landscape 
(125,145–147), back on a firm mathematical and biological ground. 
Numerous recent quantitative phage studies (9,49–51,58,59,66,67,
73–75,131–141) have pushed our understanding of systems biology onto 
another level, complementary to high-throughput and large-scale analy-
ses. It is optimistic that its study will generate more new biological 
understandings and will have an influence beyond biology, as biology has 
already inspired the theories of general systems (148) and cybernetics 
(149). In view of its past successes (e.g., one may count how many Nobel 
Prize winners in physiology, medicine and chemistry have appeared at 
http://www.asm.org/division/m/blurbs/secrets.html#top.), we are confi -
dent that more discoveries are waiting ahead.
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Applications, Representation, and 
Management of Signaling Pathway 
Information: Introduction to the 
SigPath Project
Eliza Chan and Fabien Campagne

Summary

This chapter reviews current approaches for managing signaling pathway 
information. After a brief introduction to signaling pathways and their 
computational uses in support of biomedical research, the chapter covers 
the data representation paradigms currently used to store and compute 
information about signaling pathways. File formats, ontologies, and data-
bases are considered and compared. The chapter includes a description 
of the SigPath project, which is an information management system for 
signaling pathway information.

Key Words: Information management; signaling pathways; ontology; 
database; information management system.

1. Introduction

A signaling pathway refers to the cellular apparatus that a cell uses to 
receive, transmit, integrate, and act upon signals. Various types of cells 
respond to various types of signals. Some signals are endogenous chemi-
cals; for instance, hormones carried in the blood flow from one tissue to 
another (e.g., insulin, prostaglandin, etc.). Other signals are exogenous 
chemicals (for instance, saccharose, which is sensed by cells of our taste 
buds through specific receptors (1)). In other cases, a signal can be sensed 
without being encoded by a molecule. This is the case in the outer rod 
cells of the retina, where light is the signal, or in nerves of vertebrate 
endotherms and ectotherms that sense temperature and make thermal 
regulation possible (2). Although these examples are drawn from higher 
organisms, signaling pathways are also essential to single-cell organisms 
(e.g., bacteria and yeast) and the conservation of pathways across organ-
isms is a field of study in itself. These examples illustrate the variety of 
signals that cells can sense and respond to and the importance of the 
study of signaling pathways in most branches of biology. These examples 
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also hint at the types of questions that biologists tend to ask when study-
ing signaling pathways, including the following:

• What signal does a given signaling pathway sense?
• What is the end response (the phenotype) of the pathway upon receiv-

ing the signal?
• How can a signaling pathway be modulated by a drug-like 

molecule?
• How does the cell integrate multiple signals to determine what is the 

appropriate response to generate?
• Do signaling pathways obey recurrent organizational principles?
• What are these principles and what is their advantage to the 

organism?

It is to answer these questions, and many others that scientists use 
information about signaling pathways.

This chapter briefly reviews how signaling pathways are represented 
computationally and what types of questions have been asked to lever-
age this information. We put an emphasis on the advantages and draw-
backs of the various ways to represent pathways computationally for 
most types of questions that scientists have asked of these data. We hope 
that this presentation will illustrate the intimate interplay between data 
representation and data analysis. We then proceed to describe SigPath, 
an information management system aimed at providing an electronic 
way to store, edit, and manage information about signaling pathways. 
Using SigPath as an example, we illustrate the requirements and chal-
lenges in designing and constructing an information management system 
for cell signaling pathways.

2. Signaling Pathways

Figure 1 presents a diagram of a signaling pathway as it is often rendered 
in textbooks or scientific articles. This diagram depicts molecules (some-
times called components or molecular species of the pathway) and their 
interactions. Molecules are represented as named shapes on the diagram. 
When a signaling pathway is represented by a cartoon, different shapes 
may represent different types of molecules (e.g., small molecules, pro-
teins, or different protein families, such as receptors and enzymes). Some 
shapes may also represent biological concepts (such as a gene) that do 
not have a one-to-one mapping to a molecular species. Other shapes may 
represent molecular complexes with defined or undefined stoichiometry. 
The spatial arrangements of the molecules on the diagram (i.e., proxim-
ity), and sometimes lines or arrows, represent interactions between the 
molecules (for instance, the line between Raf and MEK indicates that 
Raf phosphorylates and activates MEK (3)). Interactions are chemical 
and biochemical reactions or biochemical processes (e.g., transport across 
a membrane) in which components of a pathway participate. Figure 1 
also indicates which cellular processes are activated when certain com-
ponents of a pathway interact. In this chapter, activation of such pro-
cesses (e.g., apoptosis and differentiation) is called a phenotype to stress 
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the fact that activation of a process is under the control of genetic and 
environmental factors.

3. Knowledge Representation and Modeling

It should be clear from the previous section that a signaling pathway is 
a part of a biological system. Yet, to reason about signaling pathways, it 
is often convenient to represent them in such a way that “what if” sce-
narios can be explored, hypotheses formulated, and current knowledge 
summarized. Because it is often not possible to alter the biological system 
directly, it is convenient to experiment with a surrogate to the real thing. 
This surrogate is a model of the signaling pathway. Figure 2 illustrates 
the interplay between biological system, model, and knowledge. When 
the surrogate consists of data about the signaling pathway and is used to 
reason about the pathway, the term knowledge representation may be 
used in place of model (4). Constructing a knowledge representation or 
a model is similar, and shares the same trade-offs. First of all, to be useful, 
the model must be a simplification of reality. If the model was not simpli-
fied, it would be as complicated to probe the model as to probe the real 
signaling pathway. Because the model is a simplification of reality, one 
would not expect that it would behave exactly as the real system would. 
The art of model building is in deciding which attributes of reality can 

Apoptosis

Differentiation

Cell Cycle

ERK

cdc25

MEKK-1

MEK
Rb

Raf

ASK-1 Tv1-1

Figure 1. Cartoon representation of a signaling pathway. This diagram shows 
activation of various molecular species with respect to cellular phenotypes (dif-
ferentiation, cell cycle, apoptosis). Oval-shaped symbols represent molecular 
species. An arrow from one species to another indicates that the first species 
activates the second one. Arrows can also indicate that the activation of a species 
leads to a given phenotype.
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be ignored for a certain application. Similarly, the art of model testing is 
in devising tests that check that ignoring certain attributes do not impact 
the conclusions derived when probing the model.

A direct consequence of the previous considerations is that a model 
is tailored to a specific application. Indeed, a model that does well for 
one type of application may fail to reproduce the behavior of the real 
system in other applications.

We now review the various research applications of signaling pathway 
information, so that knowledge of applications will be readily available 
when we discuss the types of signaling pathway models that are in 
common use. The brief descriptions that follow are meant to be illustra-
tive, rather than complete, of the variety of research uses for signaling 
pathway information. Research in these areas has been very active in 
recent years and can only be glanced over in this introductory text. Yet, 
each section references review articles when appropriate to encourage 
readers to learn more about each topic.

4. Applications of Signaling Pathway Information

This section reviews the most common applications of signaling pathway 
data and models.

4.1. Browsing and Looking Up Facts

In this application, a scientist who is not familiar with a molecular species 
looks up information about it. When the species is retrieved, information 
about the species and about the interactions the species is engaged in is 
displayed. Because only one species is looked up at a time, the display 
can be tailored to human users, using natural language or illustrations as 
appropriate. Looking up a species in a database can often be a challenge 
because authors do not name species consistently (very different names 
can represent the same molecule), and because one name may refer to 
different molecules (orthologs are sometimes named the same way in 

Biological
System Model and simulation

Hypotheses

Literature or other 
information sources

Design experiment
and probe system

Figure 2. An illustration of the steps involved in the construction of a model 
based on existing knowledge of a biological system.
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different organisms). For these reasons, bioinformaticians have found 
that assigning accession codes to each biological species helps with many 
tasks, including fact lookup. Accession codes can be recorded in a note-
book and used at a later time to retrieve information without ambiguity. 
They are preferable to names when precision is required.

4.2. Putting a List of Genes into a Biological Context

Experimental and computational high-throughput methods can identify 
lists of hundreds of genes. For instance, the analysis of a microarray 
experiment may reveal that 300 transcripts are differentially expressed 
between two different experimental conditions. Such a gene list can be 
potentially very useful in understanding how the cells in the conditions 
of interest differ, but it is not practical to look up facts for 300 individual 
transcripts. Therefore, in these cases, scientists prefer methods that can 
analyze a set of species and create synthetic reports about the species in 
the set. Several types of analyses are of interest to scientists, e.g., deter-
mining what the species have in common, or putting them in the context 
of current biological knowledge. We have used microarray experiments 
as an example to illustrate this application, but many high-throughput 
proteomics or bioinformatics methods can produce gene lists and require 
techniques that can process them automatically. Methods of this type 
differ in the type of information that they associate with each species, 
and in the way the information is collected.

4.2.1. With Gene Ontology
One type of approach leverages information created and maintained by 
the Gene Ontology (GO) Consortium (http://www.geneontology.org/). 
Members of the GO consortium organize biological concepts into a 
concept graph and map genes, transcripts, and proteins to these concepts. 
For example, the human protein Rhodopsin was mapped to the concepts 
listed in Table 1. Because many proteins can be associated to the same 
GO concept, it is possible to identify concepts that appear in a gene list 
at a greater frequency than would be expected if the gene list was built 
by a random sampling of all the genes of an organism. Examples of 
such tools include GoMiner (5), David (6), and EASE (7). Application 
of these tools can reveal that certain cellular functions and processes are 
active in a certain condition (see Ford et al. (8) for an application of 
EASE to define cellular processes involved in transient focal stroke). 
However, analyses based on GO concepts generally do not yield the 

Table 1. Gene Ontology concepts associated with protein Rhodopsin 
(as of January 2006).
GO:0005887 Cellular component: integral to plasma membrane.
GO:0004930 Molecular function: G-protein coupled receptor activity
GO:0007186 Biological process: G-protein coupled receptor protein signaling 

pathway.
GO:0007603 Biological process: phototransduction, visible light.
GO:0016056 Biological process: rhodopsin mediated signaling.
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detailed mechanistic hypotheses that are needed to plan experimental 
work. GO analyses are, thus, often followed up with detailed literature 
searches about the genes associated with the function that the analysis 
has highlighted.

4.2.2. With a Database of Interactions and Appropriate 
Analysis Tools
The Ingenuity Pathway database is a commercial system that claims to 
provide access to approximately 1.3 million pairwise interactions (as of 
2005). Interactions were extracted from the literature by a scientific staff 
and are stored in a format that supports automated gene list annotations. 
When provided with a gene list, the system searches for dense networks 
of interactions that involve the species in the gene list. Results are sum-
marized as interactive diagrams that present the interactions in the net-
works and let users access detailed information about the species and 
the interactions they are involved in.

4.3. Statistical Analyses to Discover Pathway and Network Properties

Analyses of interaction networks do not need to be limited to a 
given gene list, and several groups have studied what can be learned 
when information about a large number of interactions is integrated 
(for instance all the signaling interactions known for a given organism). 
These studies aim to discover whether signaling pathways are organized 
according to general principles, and in the affirmative, to describe these 
principles.

4.3.1. Structural Properties
An example of such a study includes the discovery of motifs in the tran-
scriptional regulation network of Escherichia coli (9). A transcriptional 
regulation network is a network of interactions that includes transcrip-
tion factor–promoter interactions. In this case, general principles were 
found in the structural properties (motifs) of the transcriptional network. 
Figure 3 depicts a few network motifs. With analogy to motifs in protein 
or DNA sequences, network motifs are sets of interactions sharing 
common components that are found frequently in a biological network. 
Usually, how many motif occurrences are needed is determined with 
statistical methods, comparing the frequency of the motif in a biological 

Feedforward Loop Single Input Module (SIM) Dense Overlapping Regulons (DOR)

A

B

C

B1

A

B2 B3 B1 B2 B3

A1 A3A2

Figure 3. An illustration of network motifs found in transcriptional regulation 
networks. (Adapted from Shen-Orr et al. (9))
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network to the frequency of the same motif in a so-called null-hypothesis 
network. A null-hypothesis network is a network similar to the bio -
logical network under test, usually obtained by randomizing the biologi-
cal network in some way, so that evolutionary pressure is not expected 
to influence the presence of motifs in the null-hypothesis network. 
The significance assigned to discovered motifs is dependent on how the 
null-hypothesis network is constructed, and constructing unbiased null-
hypothesis networks can be challenging (10).

4.3.2. General Network Properties
Large networks can also be analyzed for general properties. Such proper-
ties can include statistical measures about the properties of components, 
interactions, and paths through the network (e.g., distribution of the 
number of interactions per component). Because computer science has 
popularized the concept of graphs and developed several algorithms for 
these data structures, many studies that calculate statistics about large 
biological networks rely on graph theory at some level. A review of these 
types of study and their application to improving our knowledge of cell 
biology is given in a study by Albert (11). Ma’ayan et al. conducted a 
recent study of the network of known signaling interactions in the CA1 
hippocampal neuron (12).

4.4. Detailed Biochemical Modeling and Time-Course Simulations

In the applications that we have already discussed, a qualitative descrip-
tion of signaling pathways and networks was sufficient (how components 
were connected). The applications that we discuss in this section require 
information about the dynamics of the interactions that form pathways. 
This means that detailed kinetic information (knowledge of how fast 
reactions proceed), or an approximation of this information, is needed 
for each interaction in a model. Given rate parameters and initial condi-
tions (estimates of the concentration of components at the start of the 
simulation), dynamical models can simulate how the concentrations of 
the components in the model evolve with time. The result of the simula-
tion is similar to the result of a time-course experiment, but has distinct 
advantages over an experiment. First, simulations can track the concen-
tration of each molecule in the model, for each simulated time point. 
Second, the experimental design can be changed at will by manipulating 
the inputs or components of the model before or during the simulation. 
For instance, to simulate how a pathway is activated by a ligand, the 
concentration of the ligand can be increased for a short period of time, 
or knockouts can be simulated by forcing the concentration of a compo-
nent to zero during the entire simulation. These differences with an 
experimental system make models of signaling pathways a useful tool 
for scientific hypothesis testing when used as a complement to experi-
ments (13). It should be noted that detailed biochemical models have 
been used both to make specific predictions about a signaling pathway 
(13), and to study general properties of pathways (e.g., robustness [14,15], 
or the property of certain pathways to function similarly under a wide 
range of specific rate parameters).
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5. Representing Signaling Pathways to Support 
Biomedical Research

In this section, we review the major types of models that have been used 
to represent and reason with signaling pathways. At one extreme of the 
spectrum are traditional, natural representations. Textual (interactions 
are described in sentences) and cartoon representations (interactions are 
described graphically) were used long before electronic data representa-
tion was available. We call these representations natural representations. 
Electronic, structured representations are aimed at supporting applica-
tions where data about many interactions, components, or phenotypes 
need to be integrated. This is because structured representations make 
it possible to implement algorithms to process the data, so that programs 
can perform the repetitive tasks necessary for data integration analysis 
or modeling.

5.1. Natural Representations

5.1.1. Text Representations
“Spitz and Gurken have been genetically confirmed to activate the EGF 
receptor, but Keren is uncharacterized” (16). The previous sentence illus-
trates that natural language is commonly used to represent signaling 
pathway interactions. This information can be accessed by querying with 
text search tools such as PubMed (PubMed gives researchers access to 
approximately 16 million abstracts of biomedical articles) or Twease (see 
http://www.twease.org). Text representations are best for fact lookup and 
browsing. However, many interesting applications of signaling pathway 
information require structured data in an electronic form (see section
5.2.). For this reason, various research groups have explored automated 
methods to extract structured data directly from the literature.

For instance, PubGene mines Medline abstracts to identify species that 
co-occur in abstracts more than as expected by chance (17). When pro-
vided with a gene list, PubGene produces graphs of connected species to 
indicate that two species frequently appear in the same abstract. Although 
useful, because co-occurrence in abstracts correlates with biologically 
meaningful relationships (17), graphs produced by this approach must be 
carefully inspected to remove spurious connections (connections between 
species that appear frequently in the same abstracts, but are not function-
ally related). Other methods attempt to match sentences to predefined
language domain grammars to parse natural language and extract inter-
actions, or use more sophisticated information extraction techniques. 
GENIE is an example of this type of system and has been used to extract 
interactions from a large number of full-text articles (18).

The evaluation of automatic extraction methods is often challenging 
because of the lack of a freely available truth standard. In the GENIE 
study, the gold standard was taken to be a single review article published 
in Cell, and annotated by a human expert. Performance of text-mining 
software can vary widely from article to article (as illustrated by 
the results obtained in our protein name extraction study (19), where 
precision evaluated on a set of 14 articles from the same journal varied 
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between 51% and 93%). For this reason, it appears preferable to compare 
several methods on the same dataset, rather than relying on absolute 
performance measures (19).

Because it is unclear how well fully automatic information extraction 
systems work, and because of the limited dissemination of these tools 
(most of them being proprietary and not readily available to the research 
community), several research groups have preferred to extract informa-
tion about interactions manually from the literature. An example of this 
choice is the Human Protein Reference Database (HPRD) (20,21). HPRD 
aims to offer a comprehensive resource about human protein interactions. 
A staff of approxiamtely 50 scientists reads articles and populates the 
HPRD database. The 2005 edition of the database contained approxi-
mately 35,000 interactions. HPRD is freely available for research use and 
licensed for commercial use. HPRD supports browsing and viewing of the 
information that it offers, but does not provide gene list–oriented tools.

5.1.2. Cartoon Representations
Diagrams are another natural way to present pathway information. In 
the literature, diagrams of signaling pathways come in various styles and 
generally do not follow specific conventions. Such diagrams are often 
called models, in which case they depict the interpretation of the data 
presented in an article that the authors (and reviewers) feel is the most 
likely interpretation of the data at the time the article is written. As such, 
signaling pathway cartoons are very useful summaries of hypotheses and 
facts and are used extensively throughout the biomedical literature. 
Informal cartoons of signaling pathways are sometimes accompanied 
with a legend that explains the meaning of each arrow and shape and 
other elements shown on the cartoon. However, it is quite common for 
such legends to be missing, and in these cases, cartoons are ambiguous 
and difficult to interpret for scientists who are not already familiar with 
most of the material presented in the cartoon.

In an effort to address the ambiguity problem, several groups have 
designed graphical languages for metabolic or signaling pathways, hoping 
to develop a lingua franca for signaling pathways. In 1999, Kohn pre-
sented a set of graphical conventions and applied them to diagrams of 
the cell cycle (22). Kitano et al. have recently proposed the use of process 
diagrams for the graphical representation of signaling pathways (23). It 
is worth noting that a vast majority of biologists are not using these 
conventions and continue to create informal cartoons. Similarly, scien-
tists who can read formal diagrams are a minority in the scientific com-
munity, but learning how to read formal diagrams is much easier than 
learning how to create them.

These considerations strongly suggest that graphical conventions 
would be most useful if, in addition to being nonambiguous, an algorithm 
existed to automate the rendering of signaling pathway information 
according to these conventions.

5.2. Structured Representations

Many types of electronic representations are structured in the sense 
that they are organized to facilitate computational access to the data. 
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Structuring data often removes much of the flexibility that natural rep-
resentation offer. This can sometimes be felt as an impediment to express-
ing the nuances of scientific data. However, the loss in flexibility is 
compensated by gains obtained in data consistency (structured data 
dramatically reduces ambiguity). In turn, data consistency makes large-
scale analyses possible. It appears as if, and this may be counterintuitive 
at first, too much flexibility in how data are represented can hinder 
system biology studies that require integration and analysis of large 
amounts of data. In this section, we present structured representations 
of signaling pathway information.

5.2.1. File Formats
File formats are a broad type of structured information. A file format is 
a structured representation if it can be described using context-free 
grammar. This restriction guarantees that the content of a file expressed 
in the language described by the format can be parsed without ambiguity 
(24). Various file formats have been developed to represent signaling 
pathway information. A file format is described in a specification, which 
is a document that formally describes what rules and conventions a docu-
ment must follow to adhere to the format. Specifications include both 
syntactic and semantic rules.

5.2.1.1. HUPO PSI: A file format for protein interaction data, HUPO 
PSI standardizes how protein–protein interaction data can be repre-
sented (25). HUPO documents link protein entries to entries in protein 
databases, offering users ways to obtain additional data about the pro-
teins observed in the proteomics experiment.

5.2.1.2. CellML: The Cell Markup Language (CellML) aims to provide 
an encoding of models from the intracellular level to the tissue and organ 
levels (26). The goal of CellML is to provide for the smooth integration 
and composition of representations at the various space and time scales 
necessary to model various aspects of a tissue or organ.

5.2.1.3. SBML: A popular format is the Systems Biology Markup Lan-
guage (SBML) (27). SBML files can present qualitative and quantitative 
biochemical models. SBML is developed as part of a community effort 
(through a mailing list, regular forums, and meetings).

5.2.1.4. Standards and Format Evolutions: Both SBML and CellML are 
evolving formats. For instance, SBML is being developed by a commu-
nity of users with various research interests. As research needs evolve, 
so must the standard. To allow SBML to evolve without breaking existing 
implementations (tools that can read and write SBML documents), 
SBML is released in different levels and versions. Levels are major revi-
sions to the standard, and versions group smaller changes within a level. 
At the time this chapter was written, SBML levels 1 and 2 were available, 
and Level 3 was being planned. With file formats, the responsibility of 
evolving data from one version of the file format to the next lies with 
the provider of the data. File repositories usually complement file formats 
to address evolution problems. The team responsible for the repository 
converts data and information from an older version of the file format 
to the most current version.
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5.2.2. Ontologies
The term “ontology” has gained popularity in the biomedical sciences. 
Perhaps because of this success, this term has been defined in many dif-
ferent ways, some contradictory. In this chapter, we follow Gruber (28) 
and define an ontology as a set of classes (or concepts) and the relations 
that exist among them. Those classes and relations often form a hierar-
chical structure (e.g., the GO (29)), but more complex and semantically 
rich structures are possible (e.g., EcoCyc [30] and, more recently, the 
Sequence Ontology (31)). A good introduction to the construction of 
ontologies is given by Noy and McGuinness (32) (http://www.ksl.
stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf).
The key idea is that an ontology formalizes the choices that data model-
ers have made to represent an aspect of reality. Building an ontology is 
an efficient and commonly accepted method of creating an explicit and 
formal specification of a data representation. Ontologies can be used to 
support semantically rich queries (for example, the TissueInfo ontology 
is used to expand tissue queries (33)), to structure information during 
data collection (34), or as formal documentation for data represented 
in file formats (i.e., linking an item of data in a structured file to a concept 
of an ontology explicitly defines what the data are about with respect 
to the other concepts in the ontology). Some tools, such as Protégé, 
support loading ontologies in one of the formal ontology languages (i.e., 
RDFS (35) and OWL (36)) and generating data entry forms (37). These 
tools are very useful to model an ontology and start entering data. 
However, for reasons of performance, scalability, or stability, most bio-
informatics projects are still implemented with traditional database 
backend systems.

5.2.2.1. BioPax: A file format and associated ontology to represent sig-
naling, metabolic, and genetic interactions. The format aims to be a 
standard for exchange of these data between databases and tools 
(reviewed in Stromback and Lambrix (38)).

5.2.3. Databases
Biological databases are a collection of Web-based tools used to present 
and visualize certain types of biological data and information. Databases 
generally offer flexible search facilities and may offer services such as 
downloading of data in one or multiple different file formats (for more 
information about biological data management, see Srdanovic et al. 
(39)).

5.2.3.1. Virtual Cell: The Virtual Cell is primarily a modeling tool, but 
also offers a database of models where users can save different versions 
of the models they work with, or publish models for sharing with other 
users (40).

5.2.3.2. BioModels.net: This database is a repository of published, 
curated models available in SBML format (41).

5.2.3.3. SigPath: The SigPath information management system lets 
users manage their own signaling pathway data. SigPath is a central, 
publicly available database, but is also a set of distributed databases and 
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associated tools to support the exchange of data between these databases 
and with other tools (43). The latest developments to the SigPath project 
are described in the next section.

6. The SigPath Project

SigPath (http://www.sigpath.org) is a project to create a management 
system to organize and store biochemical information for signaling path-
ways (34). SigPath offers a Web interface to a database to facilitate 
storing and browsing of biochemical data (Figure 4). The project also 
offers the SigPath Navigator as a standalone user interface to help navi-
gate information in SigPath, transfer data across different SigPath data-
bases, and help with a variety of curation tasks. This section provides an 
introduction to SigPath and illustrates how SigPath Navigator facilitates 
the interaction and exchange of data between multiple distributed 
SigPath systems.

6.1. System

6.1.1. System Architecture
Figure 5 presents the architecture of a Web-based SigPath application. 
SigPath leverages open standards such as XML, XML schemas, or Java 
Data Objects (JDO) (39). The source code of the software artifacts 

Figure 4. Web-based interface of the SigPath information management system.
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developed in the project is distributed under the Gnu General Public 
License (GPL).

6.1.2. File Format
Data submitted to SigPath can be downloaded in the SigPath XML 
exchange format. This format is fully documented on the project Web 
site. The SigPath XML exchange format can also be used to submit 
or import data into SigPath. The architecture presented in Figure 5 
facilitates maintaining data in SigPath through evolution of the SigPath 
exchange format, thereby limiting the amount of manual conversions. 
The SigPath XML exchange format is used as a medium for data transfer 
between SigPath databases. This format can be changed rapidly to sup-
port requirements introduced when developing new versions of SigPath. 
As such, the SigPath XML exchange format is unlike file formats devel-
oped via community discussions which evolve into standards and must 
remain relatively stable. Indeed the format is tightly linked to the state 
of development of SigPath and has greatly evolved since its initial version 
in May 2002 (features are only added to the SigPath XML format when 
the corresponding feature has been implemented in SigPath).

6.1.3. Ontology
Data in SigPath is organized according to the SigPath ontology (34). 
Figure 6 describes the main concepts of this ontology that are mentioned 
in this section. The SigPath ontology is implemented in a database schema 
and a set of semantic validation rules (Figure 5).

6.1.4. Data
We typically deploy different instances of the SigPath system. SigPath 
production (see link on the top right of the SigPath project Web page) 
is an instance of the SigPath system open to data submission from the 
public, which offers a public dataset at any given time. Data in the pro-
duction version of SigPath are not actively curated, so that data submit-
ters are ultimately responsible for the quality of their submissions.

SigPath beta (sp-beta) is an instance of the system that we deploy 
when new developments are incorporated into SigPath. This system is 
used mostly for testing the various components of SigPath with real data. 
SigPath beta offers a copy of the data available in SigPath production at 

Semantic Validation Rules

 Identifier of  enzymatic reaction
(sp4) does not already exist
- Accession code of  the enzyme
matches one and only one
Protein instance
- Reaction spid exists in the
database where the experiment
is submitted. 

XML

<enzymatic-reaction 
                                   spid="sp4"> 
    <reaction  spid="sp3" />
    <enzyme ac="sw:P28482"/>
</enzymatic-reaction> 

High-performance Database Management System

custom user submission,
import data from another instance of information system

export data to : another instance,  as template for user submission, for large-scale
custom data analysis tasks

ODBC access
for data mining tools

enz-reac-1 EnzymaticReaction

reaction: Reaction
enzyme:  (Protein or
 Protein containing Complex)

hMAPK

Database SchemaObject Instances

XML

Schema

formally
defines
syntax
of  XML

exchange
format

P28482
Entries in other databases, such as SwissProt, TrEMBL, NCIOpen, etc.

P28482

Figure 5. Overview of the information management approach and integration 
with external databases. The SigPath XML schema, semantic validation rules, and 
database schema together fully specify the SigPath ontology.
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the time sp-beta was set up. Data submitted to sp-beta is discarded when 
testing of the new software is complete.

Because SigPath is distributed under the GPL, other groups can down-
load the SigPath application, to compile and configure it locally. At any 
given time, there can therefore be several SigPath instances available, 
each containing partially overlapping or disjointed datasets.

6.2. Levels of Data Representation

Figure 6 presents what type of information SigPath can currently repre-
sent and manage. Figure 7 sorts these concepts differently to relate each 
concept to a type of application discussed in this chapter. Applications 
of signaling pathway information are organized from the less specific to 
the more specific. The following sections describe how each level is 
supported in the SigPath ontology.

6.2.1. Literature Level
The lower levels of information stored in SigPath allow for some ambigu-
ity. For instance, Named Chemicals are concepts of the SigPath ontology 

Interactions and Processes

Components

Concentration
Measurement

Chemical

ComplexSmall MoleculeProteinNamed Chemical

*

Interaction

Kinetic Interaction

Named Chemical
Interaction Reaction Enzymatic Reaction

Pathway

Model

Kinetic Parameter

*1..

*1..

*1..

*
1

Figure 6. Fragment of the SigPath ontology. Concepts of this ontology can rep-
resent components, interactions and processes. The figure follows the Unified
Modeling Language conventions. Arrows with an open end indicate that the 
concept pointed to is more general than the concept where the arrow originates. 
Lines without arrows indicate relations between concepts. Signs 1, *, 1..* indicate 
cardinality of these relations according to UML conventions. The line between 
Pathway and Interaction, for instance, indicates that the concept Pathway makes 
sense only in relation to one or more (1..*) interactions.
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that represent molecules with only a name and a few aliases for descrip-
tors. When a Named Chemical instance is used in SigPath, it is not clear 
if the component represents a protein, small molecule, or other type of 
component, and accordingly, the component may not have an accession 
code to link it to another database or to an organism. These limitations 
notwithstanding, the Named Chemical concept is useful to represent 
components with the level of detail that appear in an abstract or com-
plete article. Together with Named Chemical Interaction, the Named 
Chemical concept can encode the level of information typically found 
in natural language in abstract or full text articles (although the names 
of the molecules are present in this material, obtaining the type of 
the molecule or the organism in which the interaction was studied 
may require consulting other sources of information than the original 
article). When represented in this limited way in SigPath, the information 
becomes searchable, and is sufficient to build diagrams or navigate 
interactions interactively (see section 6.3). Furthermore, the data can 
be further annotated and serve as the basis to create a less ambiguous 
representation.

6.2.2. Qualitative Level
At the qualitative level, SigPath can represent interactions (interactions 
are directed and have species on their left and right), possibly under the 
control of modifier species (e.g., species that can modulate the interac-
tion by their presence or absence). Publications and individual user 
comments can be attached to interactions. Interactions are searchable by 
their interacting molecules. Molecules can in turn be searched by a 
variety of accession codes and names. Pathways are the qualitative rep-
resentation of processes. A SigPath pathway consists of a set of interac-
tions. Pathways are rendered automatically into diagrams to provide a 
graphical view of the information. Diagrams are linked on species to the 
page that describes the molecule.

6.2.3. Quantitative Level
This level requires that a kinetic mechanism and rate parameters be 
attached to an interaction. Kinetics are a way to describe how the con-
centrations of the species involved in an interaction control the rate of 
the interaction. Similarly to SBML, SigPath lets users associate a rate 

Literature
summaries

Discovery applications
(e.g., gene lists)

Biochemical modeling and 
time course simulations

Named Chemical

Small Molecule,
Protein

Concentration 
Measurement

Named Chemical Interaction

Interaction 
(Reaction/Enzymatic Reaction)

Kinetic Interaction, Kinetic

Pathway

Model

Components Interactions Processes

M
o
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p
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ifi
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Applications

Types of Information

Browsing and
fact lookup

Figure 7. Information can be represented at different levels of specificity in the 
SigPath ontology. These different levels support different uses of the information 
(applications).
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law to a kinetic (rate laws are mathematical expressions that evaluate to 
the rate of the reaction in the left to right direction). However, SigPath 
allows users to define Kinetic objects and document their variables (con-
centrations of species or constant parameters) so that other users of 
SigPath can reuse the same kinetic and attach them to other interactions. 
In SigPath, a Kinetic is endowed with a SigPath accession code. SigPath 
accession codes are called spid (for SigPath identifiers) and lets users 
identify and retrieve information in SigPath in a nonambiguous manner 
(they can be listed in articles as accession codes are for genes and pro-
teins). Models are the quantitative representation of processes in SigPath. 
Models are a set of interactions described at the quantitative level, with 
initial conditions for the molecules involved in the interactions of the 
models. Models can be exported to files in SBML (L1 v1 to L2 v2) or 
Kinetikit format (42,43).

6.2.4. Navigating Through Pathway Information
Because of its graph-like structure, pathway information can be easier 
to understand when rendered in a graphical way. However, static dia-
grams of pathway information have the disadvantage that they rarely 
match exactly the amount of detail that a user needs for a certain task 
(such as viewing all the components and/or interactions that are relevant 
to a task). For this reason, we have extended SigPath with a tool to navi-
gate pathway information (interactions, processes or components) and 
organize subsets of this information in interactive diagrams. SigPath 
Navigator is a Java Web Start application that provides a graphical meta-
phor for data in SigPath and lets users manipulate the data remotely. The 
Navigator is able to connect to and communicate with SigPath systems 
that are installed in laboratories from different geographical locations 
(provided the SigPath instances are reachable through the network 
where SigPath Navigator is started). This ability enables transfer of data 
from one SigPath system to another. SigPath Navigator also facilitates 
data curation, as will be described in the following worked example. 
SigPath Navigator leverages the SigPath XML exchange format to obtain 
or submit data from SigPath instances.

6.3. Worked Examples

6.3.1. Transfer of Data from One Instance to Another
In this example, we assume that two installations of SigPath are available 
to the user. These distinct installations of the SigPath system will be 
referred to as SigPath instance A and B. SigPath instance A contains a set 
of interactions that is not available in SigPath instance B. In this example, 
the user wants to transfer this set of data from instance A to B.

1. To connect to SigPath instance A, start SigPath Navigator and select 
“Connect to a SigPath instance” from the “SigPath” menu. The user 
needs to know the URL of the source SigPath instance. URLs for public 
versions of SigPath are predefined. If the URL to the public Web inter-
face of SigPath is known, the user can determine the URL of the source 
SigPath instance by following these templates or contacting the admin-
istrators of the source SigPath instance.
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2. The interactions can be retrieved by entering the spid values that 
uniquely identify them in the instance A. The Web interface of SigPath 
instance A can be used to search interaction data and obtain the spid
values. In the navigator, enter the spid values one by one by selecting 
“Add spid” from the “Edit” menu.

3. At this stage, the user switches SigPath Navigator to instance B by 
selecting the “Connect to a SigPath instance” option from the “SigPath” 
menu. (A predefined instance can be selected or, again, a different URL 
can be entered; refer to point 1.)

4. Once connected to instance B, select “Submit Entities to SigPath” 
from the “SigPath” menu. The user should see a Submission List panel 
at the bottom of the application. Select the Named Chemical Interaction 
items in the list and click the “Submit Checked Entities” button (Arrow 
2 in Figure 8). Only those items of information selected will be trans-
ferred to SigPath instance B.

5. If the submission is successful, the user should see a message dialog 
“Submission Successful.” A detailed error message is provided if the 
transfer failed for any reason. The submission may fail if the items of 
information selected at step 4 are not self-contained. For instance they 
could refer to molecules not present in SigPath instance B. In this case, 
the SigPath Navigator can be used to identify the missing molecules or 
other elements of information, and these can be selected before initiating 
the data transfer. Transfer may also fail if any of the data elements trans-
ferred to instance B already exist in instance B. The interactive features 
of SigPath Navigator can help users pinpoint the source of these prob-
lems and remedy them.

6.3.2. Deletion of Data
There are rules and restrictions in SigPath to ensure deletion of 
data does not cause unintentional impact on other data. For example, if 

Figure 8. The SigPath Navigator user interface. (A) Tree panel displaying a list 
of components retrieved from the database. (B) Property panel displaying infor-
mation about a selected component. (C) Graphics panel displaying a cartoon 
representation of 3 interactions. Arrow 1 shows the textual representation of 3 
Named Chemical Interactions. Arrow 2 illustrates usage of the button.

A

B

2

C

1

Submit Checked
Entities

Named Chemical Interactions:
FOS down-regulates RPS7
FOS binds JUNB
CEBPB binds FOS
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component JUNB participates with component FOS in an interaction, 
the system will not allow component JUNB to be deleted. This is because 
component JUNB is referenced in the representation of its interaction 
with FOS. SigPath Navigator reports these references as backward refer-
ences. Reciprocally, the references from the interaction to components 
FOS and JUNB is said to be a forward reference. Forward references 
are simple enough to account for, but backward references can be diffi -
cult to find using the SigPath Web interface. In this example, deletion is 
only allowed if component JUNB is not referenced by another data 
element (any of the concepts shown in Figure 6). In addition, a user can 
only delete the data that he or she has submitted previously, not the ones 
submitted by other users. As a continuation of the previous example, the 
user now wants to delete the component RPS7 from the currently con-
nected SigPath instance, as follows:

1. Select the component labeled RPS7, right-click and select the 
“Delete from SigPath Database” option. The user is prompted with 3 
options: “Save Before Deleting,” “Delete Now,” or “Cancel.” Click the 
“Delete Now” button. The user will be prompted with a message “Dele-
tion denied: You may not delete entities that have backward references 
outside your selected list.” In this case, the backward reference is the 
interaction with FOS (see Graphics panel in Figure 8). Thus, before delet-
ing RPS7, the user should delete the interaction first.

2. Change the view by selecting the “Expand” option from the “View” 
menu. Select the interaction symbol labeled “FOS down-regulates RPS7,” 
then right-click to select the “Delete from SigPath Database.” Click the 
“Save before deleting” button.

3. The user can now proceed to delete RPS7 by repeating Step 1.

Electronic resources listed

HPRD http://www.hprd.org Commercial, 
free for research

Ingenuity Pathway  http://www.ingenuity.com Commercial
database

System Biology  http://www.sbml.org Free, standard
Markup Language   driven by

community needs
BioPax http://www.biopax.org Free.
Protégé http://protege.stanford.edu Free, open-source
Virtual Cell http://www.nrcam.uchc.edu Data are freely

available if
shared by
submitter.

BioModels http://www.ebi.ac.uk/biomodels Data are freely
available.

SigPath http://www.sigpath.org Data and code are
freely available.

Twease http://www.twease.org Open source
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SBML Models and MathSBML
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Akira Funahashi, Akiya Jouraku, Sarah M. Keating, Nicolas Le Novère, 
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Summary

MathSBML is an open-source, freely downloadable Mathematica package
that facilitates working with Systems Biology Markup Language (SBML) 
models. SBML is a tool-neutral, computer-readable format for represent-
ing models of biochemical reaction networks, and it is applicable to 
metabolic networks, cell signaling pathways, genomic regulatory net-
works, and other modeling problems in systems biology that is widely 
supported by the systems biology community. SBML is based on XML, 
which is a standard medium for representing and transporting data that 
is widely supported on the Internet, as well as in computational biology 
and bioinformatics. Because SBML is tool-independent, it enables model 
transportability, reuse, publication, and survival. In addition to Math-
SBML, a number of other tools that support SBML model examination 
and manipulation are provided on the http://sbml.org Web site, including 
libSBML, which is a C/C++ library for reading SBML models; an SBML 
Toolbox for MATLAB; file conversion programs; an SBML model vali-
dator and visualizer; and SBML specifications and schemas. MathSBML 
enables SBML file import to and export from Mathematica, as well as 
providing an API for model manipulation and simulation.

Key Words: SBML; libSBML; MathSBML; systems biology; XML; 
BioModels.

1. Motivation

The SBML is a tool-neutral, computer-readable, text file (XML) format 
for representing models of biochemical reaction networks. It is especially 
applicable to descriptions of cell signaling pathways, metabolic networks, 
genomic regulatory networks, and other modeling problems in sys-
tems biology (1,2). SBML is based on XML (the eXtensible Markup 
Language), which is a standard medium for representing and transport-
ing data that is widely supported on the Internet (3) as well as in 
computational biology and bioinformatics (a recent PubMed search on 
“XML” returned 612 hits; INSPEC 4,200 hits; and Web of Science 3,009 
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hits; scholar.google.com, 810,000 hits) (4). The central goal of SBML is 
model portability. By encoding models in SBML, they can be freely 
interchanged between users, regardless of which software tool, hardware 
platform, or operating system each uses. So long as each modeler uses 
SBML-compliant software, they will both be able to run simulations 
from the same model, without modification, on their own platform, and 
compare results.

The benefits of this interoperability are enormous. Not only can users 
share models but they can also use multiple simulation tools and tech-
niques within a single research project without rewriting their models 
(5). Say, for example, that a modeler wants to perform a combination of 
discrete stochastic and continuous dynamic simulations. Usually this 
means that he will need to use two different simulation tools. Typically, 
each software program has a unique model description format that is 
incompatible with other programs. If both tools are SBML compliant, 
then the model only needs to be encoded once.

A second benefit of this standardization is model publication and 
dissemination in the peer-reviewed literature. Published models are 
described in a variety of formats: differential equations, algebraic equa-
tions, reactions, pathway diagrams, event rules, etc. If, in addition, the 
author encodes his model in SBML and makes it available to the pub-
lisher (and eventually, the journal’s readers) via an auxiliary Web site, 
then computationally astute peer-reviewers can test the models and 
verify the purported results independently of the authors. Furthermore, 
when the final paper is published, readers can easily reproduce the same 
results and incorporate them into and/or compare/contrast them with 
their own simulations. Journal editors appear to agree; for example, the 
instructions for authors of Nature Molecular Systems Biology include the 
statement “Where relevant and possible, authors are encouraged to 
submit datasets in SBML format” (6).

Finally, SBML can help ensure model survivability (7). When models 
are described in unique data formats, particularly when their authors code 
their own simulation engines, the software model survives only as long as 
the program is being used. Typically, this means that once a student gradu-
ates or a postdoctoral researcher moves on to a more permanent position 
this technology is lost by the original host institution. On the other hand, 
if commercial or widely available tools from the public domain are used, 
models typically survive only until a new version or software release 
requires a new data format, or more commonly, the program stops being 
supported on the modeler’s preferred hardware/software environment. 
Although there is no guarantee that SBML will always be around, the 
designers of nearly a hundred different tools have already made their 
software SBML compliant or announced an intention to do so in the near 
future (the growing list is regularly updated on http://sbml.org).

2. The Evolution of SBML

SBML has been developed through an evolving international collabora-
tion that reflects the wide variety of research being performed in systems 
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biology. Owing to both the geographical diversity and the size of this 
group, most discussions have taken place electronically. Moderated (to 
edit out spam) discussion lists (sbml-discuss, libsbml-discuss) are main-
tained and archived at http://sbml.org/forums. Over 2,500 messages were 
posted to these lists between October 2002 and October 2005; another 
thousand or so were posted on earlier discussion lists that were com-
bined with Systems Biology Workbench development, and countless 
other private messages have been sent between list members. These lists 
currently contain over 200 members coming from academic, commercial, 
and private environments, and from all continents.

The ideas developed and discussed through these forums were crystal-
lized through a series of open workshops and working groups starting in 
the year 2000, many of which were followed by detailed specification
documents or proposals. To date, 10 workshops and 3 “hackathons” have 
been held in Japan, the US, the UK, Sweden, and Germany (Table 1). 
Workshops provide a forum for users to become aware of new develop-
ments in SBML software, to discuss proposed SBML features so that 
consensus decisions can be made, and to maximize software interopera-
bility by discussing issues that have arisen in the various implementa-
tions. Hackathons, on the other hand, provide a forum for software 
developers to gather and work simultaneously to solve interoperability 
issues. The minutes of all workshops and hackathons are available at 
http://sbml.org/.

The specification of the original language, called SBML Level 1, was 
released on 2 March 2001. Minor deficiencies and corrections were incor-
porated in the next release, SBML Level 1, Version 2 (L1V2), on 28 
August 2003. Level 1, Version 2 replaces Level 1, Version 1, as it primarily 
corrects errors in the original document (8). A major revision, SBML 
Level 2, Version 1 (L2V1), was released on 28 June 2003 (9). Initials 
drafts of SBML Level 2, Version 2 (L2V2) and SBML Level 2, Version 
3 (L2V3) were released on March 26, 2005 and March 20, 2007, 

Table 1. SBML workshops and hackathons.
Meeting Date Location

1st Workshop April 2000 Pasadena, CA, USA
2nd Workshop Nov. 2000 Tokyo, Japan
3rd Workshop June 2001 Pasadena, CA,USA
4th Workshop Dec. 2001 Pasadena, CA, USA
5th Workshop July 2002 Hatfield, UK
6th Workshop Dec. 2002 Stockholm, Sweden
7th Workshop May 2003 Ft. Lauderdale, FL, USA
1st Hackathon July 2003 Blacksburg, VA, USA
8th Workshop Nov 2003 St. Louis, MO, USA
2nd Hackathon May 2004 Hinxton, UK
9th Workshop Oct. 2004 Heidelberg, Germany
3rd Hackathon May 2005 Tokyo, Japan
10th Workshop Oct. 2005 Boston, MA, USA
4th Hackathon April 2006 Nove Hrady, Czech Rep.
11th Workshop Oct. 2006 Tokyo, Japan
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respectively (10,11). All specification documents and related resources 
are maintained on the Web site at http://sbml.org.

The http://sbml.org Web site aims to provide for SBML what http://
www.w3.org provides to the World Wide Web. While formal membership 
in an equivalent consortium is not currently required, the intent is to 
provide a formal, nonbiased (from the perspective of individual model-
ing tools) location where specifications, schemas, technical reports, dis-
cussion lists, a Wiki, and various online tools can be maintained. The tools 
provided, such as a validator, visualizer, conversion libraries, and libraries 
for reading and maintaining SBML files, are designed to aid all modelers 
in their SBML implementations, and will be the subject of section 5 of 
this chapter. The group that maintains http://sbml.org, the “SBML Team,” 
is an international research team distributed at institutions around the 
world. The SBML Team is not the “keeper” of SBML—that role is for 
the systems biology community—merely organizers, editors, and fellow 
tool developers.

3. SBML Level 2 Models

In this section, we will review the format of SBML Level 2 Version 1 
Models. Level 1 is omitted due to space limitations, as well as the over-
whelming (and growing) prevalence of SBML Level 2; the interested 
reader should consult the references for additional information. The 
overall structure of an SBML model is

beginning of model definition
 list of function definitions
 list of unit definitions
 list of compartment definitions
 list of species
 list of parameters
 list of rules
 list of reactions
 list of events
end of model definition

The order of the lists cannot be modified, e.g., species must precede 
parameters, etc. SBML models are encoded as XML files; each XML file
contains a single “model” object, which is itself enclosed within an sbml
object (Figure 1). Each of the “lists” is optional; when present it must 
contain a nonzero number of object definitions of the following general 
form:

<listOfFoos>
 <foo .  .  .> .  .  . </foo>
 <foo .  .  .> .  .  . </foo>
 .  .  .
</listOfFoo>

wherefoo is one of the functions,units,compartments,species,
parameters, rules, reactions, or events. With the exception of 
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species, the final “s” is omitted in the individual object definitions;
in all cases, the first letter of the object is uppercase in the listOf
definition, and lowercase in the individual object definition (hence, 
listOfFoos has an uppercase “F” and is plural, and foo is singular 
and entirely lowercase).

3.1. SBML Object Hierarchy

All SBML objects derive from a class SBASE (Figure 2). Class SBASE 
(and hence all other SBML objects) contains three optional fields: a 
metaid, notes, and annotation. The metaid field is present for 
supporting metadata annotations using RDF, and has a data type of ID 
as defined by XML. Other tool users may also choose to use this metaid
field. The notes field is a container for XHTML content. There are no 
restrictions on what a user may include in this content; however, unlike 
other fields, which are designed to be read by machines, the notes field
is intended to provide a place to store information that can be read easily 
by humans. Furthermore, when a Web browser that does not support 
non-HTML XML display is used to view an SBML model, it is usually 
only the notes field that will be visible. Finally, the annotation field is 
a container for software generated information that is not intended to 

<?xml version="1.0" encoding="UTF-8"?> 
<sbml xmlns="http://www.sbml.org/sbml/level2"
    level="2" version="1">

<model id="My_Model"> 
<listOfFunctionDefinitions>
...
</listOfFunctionDefintions>
<listOfUnitDefinitions>
...
</listOfUnitDefinitions>
<listOfCompartments>
...
</listOfCompartments>
<listOfSpecies>
...
</listOfSpecies>
<listOfParameters>
...
</listOfParameters>
<listOfRules>
...
</listOfRules>
<listOfReactions>
...
</listOfReactions>
<listOfEvents>
...
</listOfEvents>

</model>
</sbml>

Figure 1. A skeleton SBML Level 2 model.
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be read by humans, but, nevertheless, contains information that cannot 
otherwise be encoded in SBML that is needed by particular software 
tools.

Nearly all SBML objects contain the following two fields: id and
name. Most objects that have an id field will require that field, which is 
used to identify the particular instantiation of that object from other 
instantiations. The value of the id field must be an identifier that begins 
with a letter and contains only letters, numbers, and the underscore 
character. SBML is case sensitive, so that “x” and “X” represent two dif-
ferent identifiers. No two identifiers in the same scope may have the same 
name; thus, no species can have the same name as any compartment. 
Units are kept in a separate scope, and (as will be seen below) reactions 
may (optionally) use locally defined parameters that have a local scope. 
The name field is always optional, and its value may be any string of 
Unicode characters.

3.2. Mathematical Expressions in MathSBML

Several SBML objects allow (or require) mathematical expressions, 
notably kineticLaw (for a reaction), stoichiometry (of a species in 
a reaction), event triggers, event assignments, and rules. All mathematical 
expressions and formulas are expressed using a subset of MathML (12). 
MathML is an XML standard for encoding such expressions in a machine-
readable format. MathML contains two flavors: presentation MathML, 
and content MathML. Presentation MathML is typically used to describe 
the placement of symbols on a page or a screen, whereas content MathML 
is used to describe the mathematical structure of an equation. For 
example, the following expresses E = mc2 in content MathML,

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
 <apply>
  <eq/>
  <ci>E</ci>
  <apply>
   <times/>

SBase

Rule SimpleSpeciesReference

Figure 2. UML diagram of the SBML inheritance hierarchy showing the major 
data types in SBML.
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   <apply>
    <power/>
    <ci>c</ci>
    <cn type=’integer’>2</cn>
   </apply>
   <ci>m</ci>
  </apply>
 </apply>
</math>

For the remainder of this chapter, whenever we refer to MathML, we 
will implicitly be referring to that subset of content MathML that 
is implemented in SBML Level 2 (Table 2). Like SBML, MathML is 
intended to be both generated and read by computers, and not by humans. 
Although short pieces of MathML are readable, the language’s verbosity 
quickly makes it difficult to follow longer expressions. Fortunately, 
there are tools available to perform this translation; for example, in 
MathSBML (discussed in greater detail in later sections) there are two 
functions, Infi xToMathSBML[infix-expression] and MathMLToInfi x
[MathML-string], which perform the conversion immediately.

3.3. Functions

A function defi nition associates a named identifier with a MathML lambda 
object that represents a mathematical function. For example,

<functionDefi nition id=”cube”>
 <math xmlns=”http://www.w3.org/1998/Math/MathML”>
  <lambda>

Table 2. The subset of MathML that is allowed in SBML Level 2.
Object Elements* Allowed

Token cn**, ci, csymbol***, sep
Basic content apply, piecewise, piece, otherwise
Relational operators eq,neq, gt, lt, geq, leq
Arithmetic operators plus, minus, times, divide, power, root,

abs, exp, ln, log, fl oor, ceiling,
factorial

Logical operators and,or, xor, not
Qualifiers degree, bvar, logbase
Trigonometric sin, cos, tan, sec, csc, cot, sinh, 
  cosh, tanh, sech, csch, coth, 

arcsin, rcos, arctan, arcsec, arccsc,
arccot, arcsinh, arccosh, arctanh, 
arcsech, arccsch, arccoth

Constants true, false, notanumber, pi, infi nity, 
  exponentiale
Annotation semantics, annotation***,

annotation-xml***

*  The attributes style, class, and id may be used on any element.
**  The attribute type may only take on one of the following: “e-notation,”“real,” 
“integer,” or “rational.”
*** encoding and defi nitionURL attributes are allowed are csymbol elements, and 
encoding is permitted on annotation and annotation-xml elements.
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   <bvar><ci> x </ci></bvar>
   <apply>
    <power/>
    <ci> x </ci>
    <cn> 3 </cn>
   </apply>
  </lambda>
 </math>
</functionDefi nition>

defines a function cube that represents the mathematical expression x3.
A later MathML expression could then refer to the function cube via
the apply command.

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
 <apply>
  <ci>cube</ci>
  <ci>x</ci>
 </apply>
</math>

3.4. Units

A unit defi nition defines physical units that can be applied to model 
objects in terms of a default set basic SI units (such as gram, liter, volt, 
etc.) For example, the user may define a unit “mmls” as millimoles per 
liter per second:

<unitDefi nition id=”mmls”>
 <listOfUnits>
  <unit kind=”mole” scale=”-3”/>
  <unit kind=”liter” exponent=”-1”/>
  <unit kind=”second” exponent=”-1”/>
 </listOfUnits>
</unitDefi nition>

and then give the value of a rate constant, later in the model, in units of 
mmls, e.g.,

<parameter id=”K” value=”0.007” units=”mmls”/>.

3.5. Compartments

Compartments are finite-sized containers for species. In SBML Level 1, 
a compartment may be a hierarchy of a topological enclosure with 
volume, but no geometric qualities. For example,

<compartment id=”Membrane” spatialDimensions=”2” 
 constant=”False”/>
<compartment id=”Cell” outside=”Membrane” size=”1”/>

defines a compartment “Cell” surrounded by a second compartment 
“Membrane.” In this example, Membrane is a two-dimensional surface 
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surrounding a three-dimensional cell. The variable represents the com-
partment size, which may either be held fixed or allowed to change 
dynamically in a rule (by setting constant=‘False’ in the com-
partment declaration). Besides the topological nesting, no other geo-
metric information is normally encoded in SBML Level 2, although such 
information could be encapsulated in rules.

3.6. Species

Species are any chemical substances that can be measured by quantity 
or concentration that take part in a reaction. Examples include proteins, 
nucleic acids, and small molecules such as O2 or ATP:

<species id=”Glucose” compartment=”cell” 
 initialAmount=”4” />

Other fields allow specifying initial concentration (instead of amount), units, 
charge, and whether or not the value should be kept constant, held as a bound-
ary condition (allowed to be changed by rules but not by reactions), or 
variable.

3.7. Parameters

Parameters are constants or variables that do not represent substances. 
Parameters may be either global or locally specified within reactions 
(see section 3.9); an example was given in section 3.4. A parameter 
may be held fixed or allowed to change dynamically (by setting 
constant=‘False’). The values of dynamic parameters may be 
changed by rules, but not by reactions. Examples of parameters are rate 
constants, mass, and physical constants such as Avogadro’s number. Rate 
constants and parameters that are referenced in multiple reactions must 
be defined globally; a rate constant that is used only in a single reaction 
can be defined as a local parameter.

3.8. Rules

Rules are mathematical expressions that describe the dynamics or 
values of variables. In SBML Level 2, there are three types of rules: 
assignment rules, rate rules, and algebraic rules. Assignment rules define
the value of a parameter (or species) as a mathematical function of other 
variables in the system. Rate rules define the rate of change (derivative 
with respect to time) of a variable as a function of other system variables. 
Algebraic rules express algebraic constraints that should be satisfied by 
the system, such as x + y − 7 = 0. For example, the following defines a 
rate rule dk1/dt = A/(1 + A), followed by an assignment rule k = k1/k2 and
an algebraic rule 0 = k1 + k2 + k3

<rateRule variable=”k1”>
 <math xmlns=”http://www.w3.org/1998/Math/MathML”>
 <apply>
  <divide/>
  <ci>A</ci>
  <apply>

CIT_Ch20.indd 403CIT_Ch20.indd   403 5/22/2007 3:53:51 PM5/22/2007   3:53:51 PM



404 Shapiro et al.

  <plus/>
  <ci>A</ci>
  <cn type=”integer”>1</cn>
  </apply>
 </apply>
 </math>
 </rateRule>
 <assignmentRule variable=”k”>
 <math xmlns=”http://www.w3.org/1998/Math/MathML”>
  <apply>
  <divide/>
  <ci>k1</ci>
  <ci>k2</ci>
  </apply>
 </math>
 </assignmentRule>
<algebraicRule>
 <math xmlns=”http://www.w3.org/1998/Math/MathML”>
 <apply>
  <plus/>
  <ci>k1</ci>
  <ci>k2</ci>
  <ci>k3</ci>
 </apply>
 </math>
</algebraicRule>

The ordering of assignment rules is critical: a program is expected to 
evaluate them in the order listed in the model. Furthermore, (a) no more 
than one assignment or rate rule can be defined for any given identifier;
(b) assignment rules override any initial conditions for that variable; 
(c) the math field of a rule can contain only identifiers that have been 
previously defined, and (d) an assignment rule cannot contain either the 
identifier for which the rule is defined or any element for which there is 
a subsequent assignment rule.

3.9. Reactions

A reaction is a statement describing a transformation, transport, or 
binding process that can change the amount of one or more species. For 
example,

<reaction id=”R1”>
 <listOfReactants>
   <speciesReference species=”X” stoichiometry=”1”/>
 </listOfReactants>
 <listOfProducts>
   <speciesReference species=”Y” 

 stoichiometry=”2”/>
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   <speciesReference species=”Z” 
 stoichiometry=”1”/>

 </listOfProducts>
 <listOfModifi ers>
  <modifi erSpeciesReference species=”A” />
 </listOfModifi ers>
 <kineticLaw>
   <math xmlns=”http://www.w3.org/1998/Math/MathML”>
   <apply>
    <times/><ci>k</ci><ci>A</ci><ci>X</ci>
   </apply>
  </math>
  <listOfParameters>
   <parameter id=”k” value=”0.1” />
  </listOfParameters>
 </kineticLaw>
</reaction>

represents the reaction X Y ZkA⎯ →⎯ +2 . The parameter k defined in this 
example is only defined locally; its existence is unknown outside of the 
reaction definition (specifically, a separate parameter namespace is 
defined for each reaction to contain its local parameters). Local param-
eters may have the same id as global parameters and local parameters 
in different reactions are permitted to have the same id. When a local 
parameter has the same id as a global parameter, then any reference 
using that id within the reaction refers to the local parameter and not 
the global parameter. Stoichiometries can also be specified with MathML 
expressions.

3.10. Events

Events are explicit, instantaneous, discontinuous state changes that are 
triggered as a result of changing conditions within a model. Events 
specify a trigger, which is the condition that causes the event to occur 
(e.g., mass > 1 and A < 2); an eventAssignment, which is an action that 
occurs as a result of the event’s triggering (e.g., set mass = mass/2); and 
a time delay (and associated timeUnits) between the occurrence of the 
trigger and the application of the eventAssignment. For example,

<event>
 <trigger>
   <math xmlns=”http://www.w3.org/1998/Math/

 MathML”>
   <apply>
    <and/>
    <apply><gt/><ci>mass</ci><cn>1</cn></apply>
    <apply><lt><ci>A</ci><cn>2</ci></apply>
   </apply>
    <apply><leq/><ci> P1 </ci> <ci> t </ci>

 </apply>
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  </math>
 </trigger>
 <listOfEventAssignments>
  <eventAssignment variable=”mass”>
    <math xmlns=”http://www.w3.org/1998/Math/

 MathML”>
    <apply><divide/><ci>mass</ci><cn>2</cn></apply>
  </math>
  </eventAssignment>
 <listOfEventAssignments>
</event>

sets mass = mass/2 when the Boolean expressions ((mass > 1) ∧ (A < 2))
change from false to true. The event will trigger only when the condition 
changes from false to true. If the condition later becomes false, and then 
true again, the event will trigger a second time.

4. Proposed Modifications to SBML

SBML is intended to meet the evolving needs of the systems biology 
community. Consequently SBML is being developed in levels, where 
each higher level adds additional features to the model definitions. These 
separate levels of SBML are intended to coexist; SBML Level 2 does 
not render SBML Level 1 obsolete. Software tools that do not need or 
cannot support higher levels may continue to use lower SBML levels; 
tools that can read higher levels are assured of also being able to inter-
pret models defined in the lower levels. Minor changes in SBML are 
called versions; versions within the same level reflect minor changes 
within that level that were omitted from the earlier version, clarifications
of intent and syntax, and typographical corrections to the model 
specifications.

As errors and omissions are discovered in the specifications, they are 
posted on an errata page at http://sbml.org. These corrections are then 
added to the next version of the specification. No new major features 
were added in SBML Level 1, Version 2; however, it did introduce several 
variant spellings (e.g., allow both meter and metre; species instead of 
specie), and a number of typographical errors, earlier omissions, and 
clarifications were introduced. SBML Level 2, Version 1 did introduce a 
number of features, notably: events; functions; the use of MathML rather 
than C-style infix expressions for formula strings; id and name fields for 
most objects; the removal of predefined rate laws; spatial dimensions; 
simplification of rule structure; and the addition of modifiers to a reac-
tion definition.

Several minor language extensions have been proposed for SBML 
Level 2, Version 2 (13). (1) Nested unit definitions will allow new units to 
be defined in terms of other units defined in the same model, rather than 
merely in terms of the base SI units listed in the specification. (2) A new 
list of species types will represent classes of chemical entities independent 
of their locations; for example, two different species, one in the cytosol 
and one in the extracellular medium, can both be labeled as calcium 

CIT_Ch20.indd 406CIT_Ch20.indd   406 5/22/2007 3:53:51 PM5/22/2007   3:53:51 PM



SBML Models and MathSBML 407

ions. (3) A new Boolean constraint rule will define conditions (e.g., 
A + B < C) under which a model is valid. If a specified constraint is 
violated, then a simulator should halt and print a message indicating that 
the constraint was violated.

A substantial number of additional changes have been proposed for 
Level 3. Because of their greater specialization, and the fact that not all 
modelers will have need for all of these features, it is likely that Level 3 
will be modular, in the sense that users will be able to specify at the 
beginning of a model which Level 3 features the model uses. These fea-
tures, which are summarized below in alphabetical order, are described 
in detail on the SBML Wiki at http://sbml.org/wiki.

Alternative reaction extensions would provide the additional data 
structures that might be required to describe reactions nondeterministi-
cally through such features as probability models, Markov chains, Petric 
nets, pi-calculus, grammar rules, etc. The present implementation of 
SBML is based on chemical reactions and rate laws, and lends itself quite 
well to differential equation formalisms, but does not provide the proper 
set of information required for nondeterministic modeling. These reac-
tion extensions could be closely related to hybrid model extensions.

Array and set extensions would describe collections of elements 
(bunches of things that are treated identically in some way) in terms of 
standard computational data structures, such as arrays, vectors, lists, sets, 
etc. These extensions can interact with the model composition exten-
sions, in that arrays or lists of models could be described. For example, 
the Arabidopsis shoot apical meristem, which is the hemispherical tip of 
the growing plant shoot that consists of approximately 500 cells, could 
be described by a dynamic array or list of models (or compartments), 
with new models (or compartments) being instantiated when cells divide 
and old models being removed when cells die.

Complex species extensions would allow models to describe a 
single species in terms of its different states, such as phosphorylated/
nonphosphorylated, or having different numbers or types of ligands 
bound to different sites. It is related to the Level 2 Version 2 extension 
of species types, but takes the idea further, in that a species can have both 
a type (e.g., MAPK) and a state (double-phosphorylated).

Controlled Vocabulary extensions would provide common terms to 
describe multiple aspects of the same thing. Different models might use 
different controlled vocabularies. For example, a reaction might be 
labeled as “Michaelis–Menten” or “Bi-Uni-Uni-Bi-Ping-Pong-Ter-Ter,” 
or it might be described as “transcriptional,” “transport,” “activation,” 
etc; a species might be labeled “substrate” or “catalyst.” A controlled 
vocabulary could also include a mechanism for synonyms, indicating that 
“Km” and “Michaelis_Constant” represent the same parameter. This will 
most likely be developed in conjunction with the Systems Biology Ontol-
ogy (SBO) effort, currently being led by three of the present authors 
(Nicolas Le Novère, Michael Hucka, and Andrew Finney). SBO consists 
of a taxonomy of the roles of reaction participants (e.g., “substrate,” 
“inhibitor,” “competitive inhibitor”); a controlled vocabulary for param-
eter rules in quantitative models (“Hill Coefficient”); and a classification
of rate laws (“Mass-Action,” “Henri-Michaelis-Menten”).
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Diagramming or layout extensions would allow a model to include 
specific descriptions of diagrams that describe the model. It would contain 
lists of graphical representations, or glyphs, of SBML model elements 
such as compartments, species, and reactions, and information about 
where to place the different glyphs on a diagram (digital or paper). The 
actual form of a specific glyph, e.g., whether a species should be repre-
sented by a simple black character string or by filled green oval, would 
be left up to the individual tool.

Dynamic model extensions provide ways to enable model structures to 
vary during a simulation. For example, a dynamic event might trigger cell 
division and add an additional compartment to the model. Dynamic ex-
tensions are closely related to array and model composition extensions.

Hybrid model extensions would allow different parts of the same 
model to be described by different formalisms. For example, one process 
could be described by a continuous differential equation, and another 
could be a discrete Markov process. Hybrid models could also involve 
alternative reaction formalisms and rules that allow dynamic switching 
between the formalisms for specific processes, constraints that need to 
be enforced during a simulation, and instantiations of submodels via 
model compositions.

Model Composition would provide the capability to define one SBML 
model in terms of other models (either in the same file or linked to 
another file), and include mechanisms for creating a hierarchy of sub-
models as “instances” of these models. For example, a model of a cell 
may contain multiple instances of a model of a mitochondria, with dif-
ferent parameter values, initial conditions, etc., or a tissue model may 
include various instances of a cell model.

Parameter Set extensions would facilitate the separation of initial con-
ditions and parameter values of a model from the model structure itself. 
Some aspects are related to the idea of model composition. In its most 
basic form, a parameter set is a collection of key value pairs, where the 
key refers to an SBML object attribute; a specific parameter set could 
then be applied to an existing model, with the appropriate name/value 
pair substitutions made.

Spatial feature extensions would add geometric characteristics to a 
model. The only geometric aspects in SBML Level 2 are hierarchies of 
compartments that are described as being inside or outside of one 
another, and some aspect of area or volume. Spatial feature extensions 
could add information ranging from location, and adjacency lists to finite
element or spline models describing the surface shape and features of a 
compartment.

5. Resources at http://sbml.org

In the following paragraphs, we briefly describe the tools at http://sbml.
org that have been designed to support SBML development and that 
could be of use to nearly all SBML modelers. All of the tools described 
here are freely accessible at http://sbml.org.
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5.1. Online Tools

The online tools enable the user to validate and visualize models in any 
version or level of SBML, and to convert Level 1 models to Level 2. The 
validator checks the model against the SBML XML schema and does 
limited consistency checks. It is possible for a model that is not valid 
SBML to be passed by the tool (because it does not include complete 
consistence checking), but it will invalidate any model that does not 
follow the SBML XML schema and a comprehensive set of rules that 
encode consistency constraints that are not expressible in the XML 
schema language. When a model is validated, the user will be provided 
with a model summary (e.g., number of each class of SBML object) and 
given the option to visualize the model or convert it to Level 2 (if 
the model is in Level 1). Errors are indicated by line number in the 
original model. The validator and converter are based on libSBML 
(see section 5.2). Visualization is provided utilizing Graphviz dot 
combined with an XSLT script, and displays the visualization as a .gif 
image in the Web browser. Because of server limitations, the online 
visualization is limited to models containing 100 or fewer reactions; 
however, the downloadable XSLT script can support models containing 
any number of reactions.

5.2. LibSBML

LibSBML is a C/C++ library providing an application programming interface 
(API) for reading, writing, and manipulating data expressed in SBML. 
LibSBML is a library designed to help read, write, manipulate, translate, and 
validate SBML files and data streams. It is not an application itself (although 
it does come with many example programs), but rather a library you can embed 
in your own applications. Although it is implemented in C/C++, it includes 
Java, Python, Perl, Lisp, and MATLAB language bindings in the distribution, 
and is written in such a way that users can write bindings from virtually any 
computer language implementation that allows cross-language bindings. The 
code is very portable and is supported on Linux, native Windows, and Mac 
OS-X operating systems.

The API provides an exhaustive list of getters (e.g., species_getInitial-
Amount), setters/unsetters (species_unsetSpatialSizeUnits), field state Booleans 
(species_isSetCompartment), object getters and creators (UnitDefiniton_addUnit, 
UnitDefinition_getUnit), enumerators, abstract classes corresponding to every 
SBML object, including full SBML field inheritance, and so forth. It also pro-
vides facilities for reading and writing SBML files, parsing models into abstract 
syntax trees, and SBML validation.

LibSBML understands all versions of SBML including Level 1, Versions 
1 and 2, Level 2 version 1, and the draft SBML Layout Proposal. It is written 
in portable, pure ISO C and C++, and can be easily ported to nearly any oper-
ating system. LibSBML can be built using either GNU or MSVC tools. The 
library is linked with standard XML libraries and can be built with either Expat 
or Xerces. Finally, LibSBML provides full XML schema validation (Xerces 
only).
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5.3. SBML Tools for MATLAB

The SBML Toolbox is a package for working with SBML models in 
MATLAB. Rather than providing a simulator, the SBML Toolbox 
provides facilities for converting an SBML model into a MATLAB-
accessible format, so both the standard MATLAB solvers and/or user-
developed simulators and libraries can be applied. The toolbox currently 
includes functions for reading and writing SBML models, converting 
SBML models into MATLAB data structures, viewing and manipulating 
those structures, converting them to MATLAB symbolic format, and 
simulating them using MATLAB’s ODE solvers. At present, the toolbox 
includes functions to translate an SBML document into a MATLAB_SBML 
structure, save and load these structures to/from a MATLAB data file, validate 
each structure (e.g., reaction structure), view the structures using a set of 
graphical user interfaces, and to convert elements of the MATLAB_SBML 
structure into symbolic form, thus allowing access to MATLAB’s Symbolic 
Toolbox. There are a small number of functions to facilitate simulation and a 
function that will output an SBML document from the MATLAB_SBML 
structure definition of a model. The toolbox is based on libSBML and requires 
a prior MATLAB installation. It has been tested in Windows, Linux, Unix, 
Cygwin, and MacOSX. Unix versions require a prior installation of libSBML; 
this is not required for the Windows version.

5.4. MathSBML

MathSBML provides facilities for reading and writing SBML models, con-
verting them to systems of differential equations for simulation and plotting 
in Mathematica, and translating them to other formats. As with the SBML-
Toolbox, its main purpose is to get models in and out of Mathematica, so that 
the user can apply them and/or all of the standard features of that language to 
the SBML model. MathSBML requires a prior installation of Mathematica,
and is fully platform independent. MathSBML is the subject of section 7 of 
this chapter.

5.5. SBML Conversion Utilities

SBML Conversion utilities provide the ability to convert models 
described in other modeling languages into SBML. So far we have im-
plemented two different model conversion utilities: KEGG2SML and 
CELLML2SBML. In addition, the online tools provide conversion form 
SBML Level 1 models to SBML Level 2 models.

KEGG2SBML is a Perl script that converts Kyoto Encyclopedia of Genes 
and Genomes (KEGG, http://www.genome.jpg/kegg) pathway database files
to SBML files using LIGAND database files (14,15). It is compatible with all 
levels and versions of SBML, and includes support for <annotations> tags for 
CellDesigner. KEGG is a suite of databases and associated software for 
describing high-order functional behaviors of cells, systems, and organisms, 
and for relating those behaviors to the organisms’ genomes. It includes several 
databases that describe protein interaction networks (the pathway database); 
chemical reactions (the ligand database); full-organism networks (gene and 
SSDB); and functional genomic (expression) and proteomic (BRITE) refer-
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ences. Despite the large amount of information (nearly one million different 
proteins and/or genes are in the gene database, for example) and extensive 
synonym and cross-links, it provides little or no information for actual reaction 
mechanisms or rate constants. KEGG2SBML requires Perl 5.6.1, expat, the 
Perl XML parser (XML::Parser), and libxml-perl, all of which are publicly 
available, as well as KEGG pathway database, KGML, and ligand database 
files that are available at the KEGG Web site. It has been tested on FreeBSD 
and Linux platforms, as well as Cygwin under Microsoft Windows.

CellML2SBML converts CellML models (16) to SBML (17). Like SBML, 
CellML is an XML-based modeling language used for storage and exchange 
of biological models. Although there are some common facilities in both 
languages, the two languages have slightly different goals. In particular, 
CellML is closely affiliated with anatomy and finite-element modeling 
languages (AnatML and FieldML). The CellML developers have been 
involved in the development of the SBML standard, and are currently devel-
oping a second tool (SBML2CellML) that will perform the conversion in the 
opposite direction. CellML2SBML is available for Windows and Linux 
systems and requires an XSLT processor to run. It consists of four XSLT style 
sheets.

5.6. Schemas, Specifications, and Test Suites

Full XML schemas (.xsd documents) have been defined for all versions of 
SBML, and are included in the download of libSBML, as well as in the speci-
fication documents.

The SBML Test Suite is a collection of models and associated automation 
scripts intended to serve as a test set for developers of SBML-enabled soft-
ware. It also includes sample models in SBML Level 1 and Level 2 format. 
Syntactic testing determines if a tool accepts only well-formed SBML and 
rejects any syntactically incorrect SBML input. This may be accomplished by 
validation against a full XML schema. Semantic testing determines if the tool 
interprets well-formed SBML correctly, i.e., whether the software constructs 
the correct model and whether that model behaves correctly. This is usually 
tested by simulation and comparison with tabular output. The semantic test 
suite at http://sbml.org includes over 100 tests, including annotated SBML 
models and tabulated output, as well as an automated script for running the 
tests against your simulator, so long as the simulator can be invoked either 
from Windows Cygwin or a Unix command line.

6. BioModels Database

BioModels database (18,19), developed through an international collaboration 
between the SBML team (US/UK/Japan), EMBL-EBI (UK), DOQCD (IN) 
the Keck Graduate Institute (US), Systems Biology Institute (Japan), and JWS 
Online (South Africa) provides access to published peer-reviewed quantitative 
biological models. The peer review is provided by the publication process; a 
model must be published in some peer-reviewed form (e.g., a journal article) 
before it can be encoded in the database. The original paper’s authors do not 
have to generate the SBML version of the model themselves. The model can 
be described in any language (e.g., differential equations, stochastic, lists of 
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chemical reactions, etc.) within the paper, but only SBML (or CellML) models 
are incorporated within the database. Anybody can submit a model to the 
database, so long as it has been published and has the appropriate references, 
but it will not be propagated in the public version of the resource until the 
model has been verified by a database curator. Curators verify that the SBML 
model is valid, well formed, syntactically correct, and correctly represents the 
referenced publication, and that simulations based on these models reproduce 
(at least some of) the published results. Curators also annotate the components 
of the models with terms from controlled vocabularies such as GO (Gene 
Ontology of ChEBI) and links to other databases (such as UniProt, KEGG, 
and Reactome). This allows the users to search accurately for the models they 
need, but also to identify precisely every component of a model. Models can 
be retrieved in SBML, CellML, and various simulator-specific formats, such 
as XPP-Aut or SciLab.

7. Managing SBML with MathSBML

MathSBML (20) is an open-source Mathematica package that facilitates 
working with SBML models. Its primary purpose is to import SBML files
into a Mathematica data structure so that users can manipulate the 
models within Mathematica without having to worry about the details of 
SBML structure. Mathematica is one of several platforms widely used by 
biological modelers, and it is available in many academic and commercial 
environments (e.g., over 500 US colleges and universities have site 
licenses). Mathematica is a symbolic computation environment that 
includes a wide range of features that are of use to computational biolo-
gists, notably numerical computation, graphics, and a programming 
language. Symbolic computation environments, also known as computer-
algebra systems, allow the users to process equations symbolically, using 
formats that are similar to mathematical equations. From the perspective 
of computational biologists, this means that reactions and kinetic laws 
can be expressed in these they are used to, such as A + B →← C or
C′[t] = k1A[t]B[t] − k2C[t]. Besides the import feature, MathSBML also 
includes functions for simulation and plotting of SBML models, 
including differential-algebraic equations and events; a complete API 
(Tables 3 and 4) for manipulating SBML Level 2 models; the ability to 
display models in human-readable form as annotated html (or within 
Mathe matica notebooks); and the ability to export new or modified
models back to XML format. A summary of MathSBML commands is 
given in Table 5.

MathSBML provides full model interoperability with Mathematica, as 
well as a candidate reference implementation of SBML. MathSBML will 
run on any platform that has Mathematica 4.1 or higher installed. The 
solution of differential-algebraic systems (SBML models that have alge-
braic rules) requires Mathematica 5.0 or higher; purely differential 
systems (SBML without algebraic rules) can be solved on Mathematica
4.1. MathSBML is compatible with all levels and versions of SBML 
released to date, as well as several features proposed for future 
releases.
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Table 3. Summary of the MathSBML API.
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add_ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
_ToSBML ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
_ToSymbolciSBML ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
get_ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
modify_ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
remove_ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
create_ ✓
createSymbolic_ ✓

The “_” in the name can be replaced with any checked object, e.g., addFunction or
modifyRule. Controllable options are summarized in Table 4.

Table 4. SBML attributes that can be controlled via the API commands 
in Table 3.
API commands for: Options*

species id, name, compartment, initialAmount, 
initialConcentration, substanceUnits, 
spatialSizeUnits, 
hasOnlySubstanceUnits, 
boundaryCondition, charge, constant

compartment id, name, constant, outside, 
spatialDimensions, size, units

event id, name, trigger, delay, timeUnits, 
eventAssignment

function id, name, math
parameter id, name, annotation, notes, value, 

units, constant
reaction id, name, fast, kineticLaw, modifi ers, 

name, products, productStoichiometry, 
reactants, reactantStoichiometry, 
reaction, reversible, parameters 

  (sub-options: value, name), timeUnits, 
substanceUnits;

rule type, variable, math
species id, name, compartment, initialAmount, 

initialConcentration, substanceUnits, 
hasOnlySubstanceUnits, 
boundaryCondition, charge, constant

unit id, name, unit (sub-options: exponent, 
scale, multiplier, offset)

model id, name; also: comments (XML Comments)

*  All objects have modifiable annotation, notes, and metaid fields. Some options are mutu-
ally exclusive.
The “options” shown generally have a 1  :  1 correspondence with SBML attributes, although 
sometimes the spelling is different. For example, reaction products option refers to the 
SBML speciesReferences within the SBML listOfProducts; however, for the 
most part, the correspondence is clear.
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7.1. Model Import

Model import is performed using SBMLRead. Suppose, for example, that 
we are interested in modeling the cell cycle, and download the model 
“Novak1997_CellCycle” from the biomodels database into a local file
BIOMD0000000007.xml. This file implements a model of DNA replication 
in the fission yeast Schizosaccharomyces pombe (21). We can read the model 
into the Mathematica computing environment with the command

m = SBMLRead [“BIOMD0000000007.xml”, context → None],

which returns a Mathematica rule list (a standard technique used in 
Mathematica to describe complex data structures), as shown in Figure 3. 
This type of data structure allows the user to access all features of the 
model directly with Mathematica; a more SBML-oriented approach 
would be to use the model builder, which is described in a later section. 
A user could get a list of all of the assignment rules in the model, for 
example, by entering

r = SBMLAssignmentRules/.m

which will return

{IEB[t]==1-IE[t], UbEB[t]==1-UbE[t], UbE2B[t]==1-UbE2[t],

 Wee1B[t]==1-Wee1[t], Cdc25B[t]==1-Cdc25[t],

 Rum1Total[t]==G1R[t]+G2R[t]+PG2R[t]+R[t],

 Cdc13Total[t]==G2K[t]+G2R[t]+PG2[t]+PG2R[t],

 Cig2Total[t]==G1K[t]+G1R[t],

 k2[t]==0.0075 (1-UbE[t])+0.25 UbE[t],

 k6[t]==0.0375 (1-UbE2[t])+7.5 UbE2[t],

 kwee[t]==0.035 (1-Wee1[t])+0.35 Wee1[t],

 k25[t]==0.025 (1-Cdc25[t])+0.5 Cdc25[t],

 MPF[t]==G2K[t]+0.05 PG2[t], SPF[t]==0.25 G1K[t]+MPF[t]}

The third rule can be obtained as rule3 = r[[3]], which would 
return

Rum1Total[t]==G1R[t]+G2R[t]+PG2R[t]+R[t]

as the value of the variable rule3.

Table 5. Summary of MathSBML commands excluding the API.
Function MathSBML Entry Points

Algebraic/MathML Infi xToMathML, MathMLToInfi x
conversion

Convert model file SBMLCopy
format

Plot results of a SMBLPlot, SBMLGridPlot, SBMLListPlot
simulation

Simulation dataTable, SBMLNDSolve
Import a model SBMLRead
Export a model SBMLWrite, createModel
Annotation control setAnnotationPackage, setAnnotationURL,
  setModelAnnotation, setSBMLAnnotation
Model display showModel
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One particularly useful feature of SBMLRead is that it constructs the 
complete set of differential equations that describe the model by com-
bining all of the kinetic laws and rate rules in the model. This set of 
differential equations is returned as the field SBMLODES. SBMLRead
also returns the stoichiometry matrix as a separate field, and this can be 
used to simulate models that do not have complete sets of kinetic laws. 
The corresponding mass-action and mass-balance equations are also 
generated.

7.2. Variable Scoping and Names

MathSBML attempts to match all identifiers in the Mathematica version
of the model as closely as possible to the name in the model. In addition, 
the hierarchies of variable scoping are preserved, e.g., units and reaction 
parameters are kept in their own namespaces. Mathematica represents
the scope of a symbol by its context. The context of a variable is indicated 
by predicating it with a string of characters ending in the back-quote 
character (normally found to the left of the number 1 on American 
keyboards).

SBML model variables are defined in a local context; the name of the 
context is determined by the model “name” in SBML Level 1, and by 

Figure 3. Abbreviated form of data structure returned by SBMLRead after importing 
the cell cycle model described in the text. The ellipsis is used to indicate that some 
parts of the data structure have not been illustrated to save space in the present book 
chapter; in actuality, MathSBML will display the entire data structure.
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the model “id” in SBML Level 2. Thus, if the SBML model foo contains
species A and B, and global parameters f and k, they will be repre-
sented as foo`A, foo`B, foo`f, and foo`k, respectively. Local param-
eters k and kf defined in reactions R1 and R2 will become foo`R1`k,
foo`R1`kf, foo`R2`k, and foo`R2`kf, respectively. The only char-
acter that is allowed in an SBML identifier that is not allowed in a 
Mathematica identifier is the underscore (“_”) character. The underscore 
has a special meaning in Mathematica that is used for pattern matching. 
SBMLRead replaces the underscore character with the \[UnderBracket] 
character (Unicode bottom square bracket 9141), which looks like a 
bracket (“[”) turned on its side, with the ends pointing up. The under-
bracket is translated back to an underscore when a model is written back 
out as an XML file.

Mathematica contains a number of standard contexts. In particular, any 
variables that you type in during a Mathematica session that do not 
explicitly include a context are placed in the Global’ context. You do 
not have to explicitly include the context in Global’ variables. Thus 
the identifiers A and Global`A represent the same variable. You can 
change the default context form Global` to something else by changing 
the value of the Mathematica identifier $Context.

In SBMLRead, the option context → None indicates that the model 
should be placed in the local context. Thus, in the example in the previous 
section, we had a variable Cdc13Total and a global parameter mu,
would normally be represented as represented as NovakTyson1997-
CellModel`Cdc13Total and NovakTyson1997CellModel`mu.
The units of the compartment Cell are specified in litre, which 
is represented as NovakTyson1997CellModel`Units`litres,
because units are kept in their own namespace. This particular model 
does not use any local parameters in the kinetic laws form reactions; 
however, if we were to add a parameter k to the reaction Cdc25Re-
action it would become NovakTyson1997CellModel`Cdc25Reac
tion`k. By using the option context → CellCycle in our call 
to SBMLRead, these would become CellCycle`Cdc13Total,
CellCycle`Units`litre, and CellCycle`Cdc25Reaction`k.

7.3. Simulation and Plotting

Suppose you are interested in running a deterministic simulation of the 
model that was imported in the previous section. This feat is accom-
plished with SBMLNDSolve, which is a wrapper for the Mathematica
numerical solver NDSolve. To run a simulation of NovakTyson-
1997CellModel for 400 minutes (the units of time are redefined as 
minutes in the model) you would enter

r=SBMLNDSolve [m, 400]

The result is returned as a list of interpolation sets that are compatible 
with Mathematica interpolation and plotting functions. If you wanted to 
write a table of values of the model variables Rum1Total and
Cdc13Total at intervals of 1 min from t = 150 to t = 200 to a comma-
separated value file “results.csv,”
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dt = dataTable[{Rum1Total, Cdc13Total}, {t, 150, 
 200, 1}, r];
Export[“results.csv”, dt, “csv”]

Other standard output file formats, including .dif, .fit, fits, .hdf, .h5, .mat, 
.mtx, .tsv, .txt, .xls, are also supported.

Suppose instead of generating a table of data, you want a plot of those 
same variables:

SBMLPlot[r, {Rum1Total, Cdc13Total}]

The plot will normally be displayed on the screen and remain embedded 
in the Mathematica notebook. SBMLPlot is a wrapper for the Mathe-
matica function Plot. Any standard plotting options can be specified as 
follows:

p = SBMLPlot[r, {Rum1Total, Cdc13Total},
  PlotStyles→{
   {Dashing[{.02}], Thickness[.005], Blue},
   {Thickness[.002], RGBColor[1,0,0]}},
  ImageSize→600,
  TextStyle→{FontFamily→Times, FontSize→18},
  holdLegend→True]

will generate a 600-pixel-wide image (Figure 4) with Rum1Total as a 
thick dashed blue line and Cdc13Total as a thinner solid red line. 
Figures can be exported, e.g., via

Export[“myplot.jpg”,p,”jpg”]

many standard graphics types are supported, including .bmp, .dcm, .dic, 
.eps, .gif, .jpg, .pbm, .pcx, .pdf, .pgx, .pict, .pnm, .png, .ppm, .svg, .tif, .wmf, 
and .xbm file formats.
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Figure 4. A plot of the two variables Rum1Total (dashed line) and Cdc13Total 
(solid line).
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The MathSBML simulator, SBMLNDSolve, is a wrapper for Mathe-
matica’s NDSolve, which in turn evolved from the LSODA, IDA, and 
DASPK solvers. It incorporates a wide range of methods, including stiff 
and nonstiff integrators and switching methods and a framework for 
incorporating external solvers.

Events are implemented by the following algorithm, which ensures 
that events activate only when an event’s trigger changes from false to 
true. Each event E in an SBML model in has a trigger expression TE and
assignments AE. We replace the event E, with the following:

• a Boolean variable VE with initial value false
• an event E1 with trigger TE1 = (not VE) ∧ TE and assignments AE and

VE = true
• an event E2 with trigger TE2 = (not TE) ∧ VE and assignment VE = false

The existence of the pseudoevents E1 and E2 and the new model vari-
able VE is completely transparent to the user, who is only aware of the 
existence of the events specified in the model. Events with delays are 
similarly handled by creating a pseudo-event that triggers once when the 
specified delay has elapsed. Our cell cycle model actually has two events, 
one with a delay, and one with multiple assignments:

• Event start (the start of S phase) occurs when SPF (S-phase promot-
ing factor) crosses 0.1 from below; after a delay of 60 min, the model 
parameter kp is cut in half.

• Event Division (cell division) occurs when UbE crosses 0.1 from 
above. This triggers halving if the parameter Mass and doubling of the 
parameter kp.

Events are then detected in Mathematica 5.1 (and higher) by throwing 
and catching the event occurrence via the NDSolve StepMonitor
option; in earlier versions, they are detected by the option Stopping-
Test. In all cases, the precise event time is found by backward interpola-
tion. If multiple events occur simultaneously, all are detected and 
processed.

7.4. The Model Builder: An SBML API

MathSBML contains a simple model editor, allowing users to create 
SBML models compatible with other simulators, as well as a Mathemat-
ica text-command based API that can be used to produce arbitrarily 
complex SBML files. The model editor contains a suite of commands to 
add, modify, or remove single SBML objects (such as a reaction, chemical 
species, or equation) from the current model (Tables 3, 4, and 5). The 
model may be either created de novo or read from a file. After building 
the model, the user can test it by running simulations, continue to modify 
it, or write the results as an SBML file, in no particular order.

There is a set of functions (addX, modifyX, and removeX) for each 
class of SBML model object: compartment, event, function, parameter, 
reaction, rule, species, and unit. Options allow users to specify specific
object field values. For example, a partial list of the commands needed 
to create the Tyson cell-cycle model from scratch is illustrated in 
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Figure 5. The last step in the box creates an .xml file cellCycle.xml.
A large number of consistency checks are made as the commands are 
typed to ensure that the SBML specification is satisfied. For example, 
every species must be associated with a compartment; if a compartment 
is not specified by the addSpecies statement, then the most recently 
referenced compartment is used. If no compartment has been defined
yet, a new one is defined.

As the current model is built, it is stored internally by MathSBML. At 
any point in model development, either before or after the .xml file has 
been written, the model can be loaded into the simulator and tested via 
the loadSimulator command. The return value of loadSimulator
is identical to the return value from SBMLRead, and therefore it is com-
patible with SBMLNDSolve. Similarly, SBMLRead will automatically 
load the model builder whenever a level-2 model is read in, so that it can 
be modified by add, remove, or modify commands.

Internally, an SBML model is stored as symbolic XML, a standard 
Mathematica data structure for handling XML files. The functions 
getX[n] return the nth object of class X in symbolic XML; the argu-
ment may be a number, an id, or a list of both. For example, getReac-
tion[2] returns the second reaction in the model. The function XMLOut
is used there to generate the corresponding XML fragment. Other func-
tions XtoSymbolicSBML and XtoSBML allow one to generate the 
corresponding symbolic XML or XML fragment for any SBML object.

Figure 5. Model builder commands needed to create the cell cycle model. 
Because of space limitations, only a subset of the commands are shown; the verti-
cal ellipses indicate that many commands were omitted. All of the omitted com-
mands are of the form “addX.” The last statement in the list, createModel, 
generates the SBML file cellCycle.xml.
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MathSBML is freely downloadable (LGPL license) from sourceforge 
at http://sf.net/projects/sbml. Full documentation with examples of all 
entry points, including the entire API is available, on the http://sbml.org 
Web site at http://sbml.org/software/mathsbml/. Instructions for down-
loading and installing MathSBML are also provided on that site. Math-
SBML will run under any operating system or platform on which 
Mathematica is already installed; a complete list of compatible systems 
is given at http://www.wolfram.com.
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CellDesigner: A Graphical Biological 
Network Editor and Workbench 
Interfacing Simulator
Akira Funahashi, Mineo Morohashi, Yukiko Matsuoka, Akiya Jouraku, 
and Hiroaki Kitano

Summary

Understanding the logic and dynamics of gene-regulatory and biochemi-
cal networks is a major challenge of systems biology. To facilitate this 
research topic, we have developed CellDesigner, a modeling tool of 
gene-regulatory and biochemical networks. CellDesigner supports users 
to easily create such networks, using solidly defined and comprehensive 
graphical representation (SBGN, systems biology graphical notation). 
CellDesigner is systems biology markup language (SBML) compliant, 
and has Systems Biology Workbench(SBW)-enabled software so that 
it can import/export SBML-described documents and integrate with 
other SBW-enabled simulation/analysis software packages. CellDesigner 
also supports simulation and parameter search, which is supported 
by integration with SBML ordinary differential equation (ODE) 
Solver, enabling us to simulate through our sophisticated graphical 
user interface. We can also browse and modify existing SBML models 
with references to existing databases. CellDesigner is implemented in 
Java; thus, it runs on various platforms such as Windows, Linux, 
and MacOS X. CellDesigner is freely available from our Web site at 
http://celldesigner.org/.

Key Words: Pathway editor; biochemical simulation; SBML; SBW; 
systems biology; SBGN; XML.

1. Introduction

Systems biology is characterized by the synergistic integration of theory, 
computational modeling, and experimentation (1). Although software 
infrastructure is one of the most crucial components of systems biology 
research, there has been no common infrastructure or standard to enable 
integration of computational resources. To solve this problem, the SBML 
(http://sbml.org) (2) and the SBW (http://sbw.kgi.edu) have been devel-
oped (3). SBML is an open, extensible markup language (XML)–based 
format for representing biochemical reaction networks, and SBW is a 
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modular, broker-based, message-passing framework for simplified inter-
communication between applications. More than 100 simulation and 
analysis software packages already support SBML, or are in the process 
of being able to support them.

Identification of logic and dynamics of gene-regulatory and biochemi-
cal networks is a major challenge of systems biology. We believe that the 
standardized technologies, such as SBML, SBW, and SBGN, play an 
important role in the software platform of systems biology. As one such 
approach, we have developed CellDesigner (4), which is a process 
diagram editor for gene-regulatory and biochemical networks.

In this chapter, we will introduce the main features of CellDesigner.

2. Features of CellDesigner

Broadly classified, the current version (3.1 at the time this was written) 
of CellDesigner has the following features:

• Representation of biochemical semantics
• Detailed description of state transition of proteins
• SBML compliant (SBML Level 1 and 2)
• Integration with SBW-enabled simulation/analysis modules
• Integration with native simulation library (SBML ODE Solver)
• Capability of database connections
• Extreme portability as a Java application

The aim in developing CellDesigner is to supply a process diagram 
editor with standardized technology (SBML in this case) for every 
computing platform, so that it could confer benefits to as many users as 
possible. By using the standardized technology, the model could be easily 
used with other applications, thereby reducing the cost to create a 
specific model from scratch. The main standardized features that 
CellDesigner supports could be summarized as “graphical notation,” 
“model description,” and “application integration environment.” The 
standard for graphical notation plays an important role for efficient and 
accurate dissemination of knowledge (5), and the standard for model 
description will enhance the portability of models between software 
tools. Similarly, the standard for application integration environment will 
help software developers to provide the ability for their applications to 
communicate with other tools.

2.1. Symbols and Expressions

CellDesigner supports graphical notation and listing of symbols based 
on a proposal by Kitano et al. (5). The definition of graphical notation 
has now been developed as international community–based activities 
called SBGN (http://sbgn.org). Although several graphical notation 
systems have been already proposed (6–11), each has obstacles to becom-
ing a standard. SBGN is proposed for biological networks designed to 
express sufficient information a in clearly visible and unambiguous way 
(5). We expect that these features will become part of the standardized 
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technology for systems biology. The key components of SBGN, which we 
propose, are as follows:

1. To allow representation of diverse biological objects and 
interactions.

2. To be semantically and visually unambiguous.
3. To be able to incorporate notations.
4. To allow software tools to convert a graphically represented model 

into mathematical formulas for analysis and simulation.
5. To have software support to draw diagrams.
6. To have a freely available notation scheme.

To accomplish these requirements for the notation, Kitano et al. (5) 
first decided to define a notation by using a process diagram, which 
graphically represents state transitions of the molecules involved. In the 
process diagram representation, each node represents the state of mole-
cule and complex, and each arrow represents state transition among 
states of a molecule. In the conventional entity-relationship diagrams, an 
arrow generally means “activation” of the molecule. However, it confuses 
the semantics of the diagram, as well as limiting possible molecular pro-
cesses that could be represented. A process diagram is more intuitively 
understandable than the entity-relationship diagram; one of the reasons 
for this is that the process diagram could be explicitly represented as a 
temporal sequence of events, which entity-relationship cannot. For 
example, during the process of maturation-promoting factor (MPF) acti-
vation in the cell cycle, kinases such as Wee1 phosphorylates residues of 
Cdc2, which is one of the components of MPF (Figure 1). However, MPF 
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Figure 1. A process diagram representation of the MPF cycle.
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is not yet activated by this phosphorylation. If we use an arrow for acti-
vation, we cannot properly represent the case. In the process diagram, 
on the other hand, whether a molecule is “active” or not is represented 
as a state of the node, instead of by an arrow. The promotion and inhibi-
tion of catalysis are represented as a modifier of state transition, using a 
circle-headed line and a bar-headed line, respectively.

Although a process diagram is suitable for representing temporal 
sequence, either the process diagram or the entity-relationship approach 
could be used, depending upon the purpose of the diagram. Both nota-
tions could actually maintain compatible information internally, but 
differ in visualization (5).

We propose, as a basis of SBGN, a set of notations that enhance the 
formality and richness of the information represented. The symbols used 
to represent molecules and interactions are shown in Figure 2.

The goal of SBGN is to define a comprehensive system of notation 
for visually describing biological networks and processes, thereby 
contributing to the eventual formation of a standard notation. For such 
a graphical notation to be practical and to be accepted by the community, 
it is essential that software tools and data resources be made available. 
Even if the proposed notation system satisfies the requirements of 
biologists, lack of software support will drastically decrease its advan-
tages. CellDesigner currently supports most of the process diagram 
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Figure 2. Proposed set of symbols for representing biological networks with 
process diagrams.
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Figure 3. Screenshot of CellDesigner.

notation proposed, and will fully implement the notation in the near 
future (Figure 3).

2.2. SBML Compliant

CellDesigner is an SBML-compliant application—it supports SBML 
reading and writing capabilities. SBML is a tool-neutral, computer-
readable format for representing models of biochemical reaction net-
works, and it is applicable to metabolic networks, cell signaling pathways, 
gene regulatory networks, and other modeling problems in systems 
biology. SBML is based on XML, which is a simple, flexible text format 
for exchanging a wide variety of data (11). The initial version of the 
specification was released in March 2001 as SBML Level 1. The most 
recently released version of SBML is Level 2 Version 1, and Level 2 
Version 2 was released in January 2006. Currently, SBML is supported 
by over 100 software systems and is widely used. CellDesigner uses 
SBML as its native model description language, and thus, once a user 
creates a model by CellDesigner, all information inside the model will 
be stored in SBML and the model could be used by other software 
systems without any conversion of the model. As mentioned, CellDe-
signer draws a pathway with its specialized graphical notation. Because 
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such layout information has not been supported by SBML, CellDesigner 
stores its layout information under an “annotation” tag, which does not 
conflict with current SBML specification. There is a working group of 
layout extensions for SBML, and they will be incorporated to SBML 
Level 3. We are currently working to implement a conversion module 
to export SBML layout extension from CellDesigner. CellDesigner has 
an auto layout function so that it can read all SBML Level 1 and 2 docu-
ments, whether the model contains layout information or not. By using 
this function, users can use existing SBML models, such as KEGG, Bio-
Models database, etc. We have converted more than 12,000 metabolic 
pathways of KEGG to SBML (the pathways are available from http://
systems-biology.org/). Other SBML models are available from the 
BioModels Database (http://www.ebi.ac.uk/biomodels/). We could 
also use our own SBML models created by CellDesigner on other 
SBML-compliant applications (http://systems-biology.org/001/).

2.3. SBW Enabled

CellDesigner is an SBW-enabled application. With SBW installed, Cell-
Designer could integrate all SBW-enabled modules (Figure 4). For 
example, users could browse or modify a model converted from an exist-
ing database with CellDesigner, and launch a simulator from CellDe-
signer (by selecting Simulation Service or Jarnac Simulation Service 
from the SBW menu) to run simulations in real time. There are many 
other SBW-enabled modules, such as ODE-based simulator, stochastic 
simulator, MATLAB, FORTRAN translator, bifurcation analysis tool, 

SBW
BrokerModel Editor

Figure 4. Illustration of the relationship between SBW Broker and SBW 
modules.
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and optimization module. These SBW-enabled modules are freely avail-
able from http://sbw.kgi.edu/.

2.4. Supported Environment

CellDesigner is implemented in Java, and could run on many platforms 
that support Java Runtime Environment (JRE). Currently, CellDesigner 
runs on the following platforms:

• Windows (98SE or later)
• MacOS X (10.3 or later)
• Linux (Fedora Core 4 or later)

The current version of CellDesigner requires JRE1.4.2 or higher and X 
Window System for UNIX platforms.

2.5. Exporting Capability

Because CellDesigner is supposed to be a “design tool” for representing 
gene regulatory and biochemical networks, the pathways described by 
CellDesigner should be easily used in various situations (e.g., figures in 
a manuscript). CellDesigner could thus export the pathways in various 
formats; it can currently export in JPEG, PNG, and SVG formats.

2.6. Simulation Capability

One of our aims is to use CellDesigner as a simulation platform; thus, 
integration capability with native simulation library has been imple-
mented. SBML ODE Solver (12) can be invoked directly from Cell-
Designer, which enables us to run ODE-based simulations.

The SBML ODE Solver Library is a programming library for symbolic 
and numerical analysis of chemical reaction network models encoded in 
SBML. It is written in ISO C and distributed under the open source 
LGPL license. SBML ODE Solver can read SBML models by using 
libSBML (13), and then construct a set of ODEs and their Jacobian 
matrix, and so forth. SBML ODE Solver uses SUNDIALS’ CVODES 
(http://www.llnl.gov/CASC/sundials/) for numerical integration and sen-
sitivity analysis. The performance of simulation engine is a critical issue 
for a simulation platform, so we have wrapped the C API of SBML ODE 
Solver from Java by using Java Native Interface. This resulted in a small 
overhead of simulation execution time compared with native library, and 
still retained the broad support of multiple operating systems. The simu-
lation engine itself is executed by native library, and the results are 
shown in a GUI window written in Java (Figure 5). The simulation 
results can be exported to CVS, JPEG, and PNG formats, and to various 
bitmap files.

2.7. Database Connection Capability

To efficiently conduct network analysis, connection with databases is 
significant, as users may want to further examine network characteristics. 
We have added this capability, enabling direct connection with the fol-
lowing databases:
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• SGD (Saccharomyces Genome Database, http://www.yeastgenome.
org)

• DBGET (Database retrieval system for a diverse range of molecular 
biology databases, http://www.genome.ad.jp/dbget/)

• iHOP (Information Hyperlinked Over Proteins, http://www.ihop-net.
org/UniPub/iHOP/)

• PubMed (http://www.pubmed.gov)
• BioModels (Database of annotated computational models, http://

www.biomodels.net/)

Once a species is selected, users can select the “Database” menu, from 
which those databases can be chosen to query according to the name of 
the species. For PubMed connection, a PubMed search is conducted 
according to the ID written in the Notes of the components. From the 
BioModels database, users can import (and not query) SBML-based 
models, which are those curated computational models prepared for 
simulations or further various analyses.

2.8. Collaboration with Worldwide Groups

Our approach seems to have attracted quite a lot of attention. We have 
been collaborating with several groups. One of the groups is Applied 
Biosystems, a biotech company. In their application, the engine of Cell-
Designer is used in the Web-based front end of the PANTHER pathway 
system to represent protein networks ([14,15] http://www.pantherdb.
org/; Figure 6).

Figure 5. Snapshot of a simulation result obtained by integration with SBML 
ODE Solver.
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Similar to the case of PANTHER, CellDesigner will be used as a 
pathway viewer on the BioModels database (http://www.biomodels.net). 
Given a curated computational model-based database, we developed an 
Applet-based CellDesigner so that it could be embedded in the front 
end of the BioModels database.

On the other hand, we have recently joined BioPAX-DX (data 
exchange), which aims to facilitate data exchange in the short term, by 
providing a data schema. BioPAX is a worldwide collaborative effort to 
create a data exchange format for biological pathway data.

Other collaborative efforts include SBML ODE Solver development 
from the University of Vienna, and Taverna from the Taverna project.

3. How Does it Work?

Building models with CellDesigner is quite straightforward. To create a 
model, the user selects “New” from “File” menu, inputs the name of an 
SBML document, and a new canvas will then appear. The user could 
then add a species, such as a protein, gene, RNA, ion, simple molecule, 
and so forth. A new window will appear asking the name of the species. 
The size of each species can be changed by clicking and dragging the 
corner of species. The user can also define the default size of each species 
using the “Show Palette” option from the “Window” menu. Species’ can 
be moved by dragging and dropping.

Figure 6. Screenshot of PANTHER.
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To draw reactions, a type of reaction should first be selected from the 
UI buttons, and a reactant species then clicked, followed by a product 
species. To add more reactants, the user can click the “Add reactant” 
button, and then choose a species and a reaction.

As we briefly mentioned, the modeling process with CellDesigner is 
in straightforward steps that should not cause users any confusion.

CellDesigner can also represent common types of reactions, such as 
catalysis, inhibition activation, and so forth. The procedure for represent-
ing such reactions is just the same as adding reactants or products to an 
existing reaction; i.e., to select a species (modifier), followed by a reac-
tion. The user can also easily edit the symbols for proteins with modifica-
tion residues, and hence, can describe detailed state transitions between 
species of an identical protein by adding different modifications.

The models are stored in an SBML document, which contains all the 
necessary information referring to species, reactions, modifiers, layout 
information (geometry), state transitions of proteins, modification resi-
dues, etc. These SBML models could be used on other SBML-compliant 
applications.

If users want to run a simulation based on the SBML model, select 
Simulation menu, which, in turn, calls on the SBML ODE Solver directly. 
The control panel appears, enabling users to specify the details of param-
eters, to change the amount of a specific species, to conduct a parameter 
search, and to run a simulation interactively. To conduct a time-evolving 
simulation, users may need to know the basics of the SBML specification
(see http://sbml.org for details).

If users select the SBW menu, on the other hand, CellDesigner passes 
the SBML data to the SBML-compliant tools via SBW, whereas you 
need to set up SBW before you invoke SBW connection.

4. What Distinguishes CellDesigner’s Technology from 
Others Currently Available?

Currently, many other applications exist that include pathway design 
features. The advantages of CellDesigner over other pathway design 
tools could be summarized as follows:

• Based on standard technology (i.e., SBML compliant and SBW 
enabled),

• Supports clearly expressive and unambiguous graphical notation 
systems (SBGN), which is aimed at contributing to eventual standard 
formation

• Runs on many platforms (e.g., Windows, MacOS X, Linux)

As described above, the aim of the development of CellDesigner is to 
supply a process diagram editor with standardized technology for every 
computing platform, so that it will benefit as many biological researchers 
as possible. Some of the existing applications are SBML-compliant, and 
some run on multiple platforms

These tools are powerful in some aspects and they are not intended 
to support the features as CellDesigner. Some of them have the facility 
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to create pathways, and some also include a simulation engine or data-
base integration module. CellDesigner does include a simulation engine 
provided by SBML ODE Solver development team, and it can also 
connect to other SBW-enabled applications so that users could switch 
the simulation engine on the fly. Furthermore, we have been converting 
existing databases to SBML (e.g., KEGG), and all SBML-compliant 
applications could easily be browsed, edit the models, and even simulate 
via CellDesigner.

The overriding advantage of CellDesigner is that it uses open and 
standard technologies. The models created by CellDesigner could be 
used on many other (over 100) SBML-compliant applications, and its 
graphical notation system will make the representation of models in a 
more efficient and accurate manner.

5. Future Work

In future versions of CellDesigner, we plan to implement more capabili-
ties. Improvement of the autolayout function is a big issue; the bigger 
(e.g., more than a few hundred nodes) the network diagram becomes, 
the slower the performance of CellDesigner becomes, which causes our 
current version not to align each node and edge well. Integration with 
other modules is also underway, such as other simulation, analysis, and 
database modules. Current version of CellDesigner has been imple-
mented as a Java application, although we are developing a JWS (Java 
Web Start) version of CellDesigner so that it could be used as a Web-
based application as well.

To be widely used from biologists to theorists, we believe that it is 
essential to meet the standard. We are thus actively working as SBML 
and SBGN working group members, with aims to establish de facto 
standards in the systems biology field; SBML seems to have already 
become de facto as model description language. SBML Level 3 will 
include layout extensions, and we will incorporate the functions in our 
new release of CellDesigner. BioPAX (http://ww.biopax.org) is another 
big activity, which tries to connect widely distributed data resources 
seamlessly. We also plan to connect CellDesigner with the BioPAX data 
format so that users could use CellDesigner from BioPAX platform and 
vice versa.

From software development perspectives, providing API, plug-in 
interface, or open-source strategy might be a solution to speed up the 
development, and enable users to customize the software depending on 
their needs. Although we have been providing binary programming of 
CellDesigner so far, we are now working to extend our development 
scheme.

We want CellDesigner to be used by anyone who is working in a 
biology-related field. As described throughout this chapter, CellDesigner 
is designed to be as user-friendly as possible, thus allowing users to 
draw pathway diagrams as easily as drawing with other drawing tools, 
such as Microsoft Visio or Adobe Illustrator. Because our proposed 
notation itself is rigidly defined, the diagrams could be used for presen-
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tation, or even as a knowledge base; the diagrams could be used as 
figures in a manuscript or a pathway representation of databases. 
Because pathway diagram notation is now getting more attention, 
which has resulted in the formation of an SBGN working group (http://
sbgn.org), we hope the notation will be more refined as a de facto 
standard representation, which will be reflected in the presentation of 
CellDesigner.

Our concept for developing CellDesigner is to make it “easy to 
create a model, to run a simulation, and to use analysis tools.” This 
will be achieved by extending the development of corresponding 
native libraries or SBW-enabled modules. Improvement of the graphical 
user interface is also required, including the mathematical equation 
editor, so the user can easily write equations by selecting and dragging 
a species.

6. Conclusion

We have introduced CellDesigner, which is a process diagram editor for 
gene-regulatory and biochemical networks based on standardized 
technologies and with wide transportability to other SBML-compliant 
applications and SBW-enabled modules. Since the release of CellDe-
signer, there have been 12,000 downloads. CellDesigner also aims to 
support standard graphical notation. Because the standardization process 
is still under way, our technologies are still changing and evolving. As 
we are in partnership with SBML, SBW, and SBGN working groups, we 
will go through with these standardization projects, thereby improving 
the quality of CellDesigner.

The current version of CellDesigner is 3.1-RELEASE (as of March 
2006), and it runs on multiple platforms, such as Windows, Linux, and 
MacOS X, and is freely available from http://celldesigner.org/.
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DBRF-MEGN Method: 

An Algorithm for Inferring Gene 
Regulatory Networks from Large-

Scale Gene Expression Profiles
Koji Kyoda and Shuichi Onami

Summary

The difference-based regulation finding–minimum equivalent gene 
network (DBRF-MEGN) method is an algorithm for inferring gene 
regulatory networks from gene expression profiles corresponding to 
gene perturbations. In this method, gene regulatory networks are 
modeled as signed directed graphs, and the most parsimonious graphs 
consistent with gene expression profiles are deduced by using a graph 
theoretical procedure. The method is applicable to large-scale gene 
expression profiles, and gene regulatory networks deduced by the 
method are highly consistent with gene regulations identified through 
classic small-scale experiments in genetics and cell biology. Free 
software for the method is available and runs under Windows or 
Linux platforms on a typical IBM-compatible personal computer. The 
DBRF-MEGN method will provide invaluable information for basic 
biology and drug discovery.

Key Words: Gene network inference; signed directed graph; microarray; 
gene expression profiles; perturbation; deletion mutant; overexpression 
mutant.

1. Introduction

The DBRF-MEGN method is an algorithm for inferring gene regulatory 
networks (hereafter called gene networks) from gene expression profiles
corresponding to gene perturbations. Combination of technologies for 
perturbing (i.e., down- or up-regulating) the activity of genes (1–6), along 
with those for systematic measurement of expression of genes (7,8), 
enables us to obtain large-scale gene expression profiles corresponding 
to gene perturbations (9,10). Inference of gene networks from such gene 
expression profiles will greatly contribute to both basic biological 
advances and drug discovery.

435
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Many procedures have been developed for inferring gene networks 
from gene expression profiles corresponding to gene perturbations. In 
these procedures, gene networks are modeled by using various mathe-
matical frameworks. Ideker et al. modeled gene networks as acyclic 
Boolean networks and deduced a network consistent with profiles by 
using a combinatorial optimization technique (11). Pe’er et al. modeled 
gene networks as Bayesian networks and estimated gene networks by 
using machine learning technology (12). Wagner modeled gene networks 
as directed acyclic graphs and deduced the most parsimonious graph 
consistent with profiles by using a graph theoretical procedure (13).

In the DBRF-MEGN method, gene networks are modeled as signed 
directed graphs (SDGs), and the most parsimonious SDGs consistent 
with gene expression profiles are deduced by using a graph theoretical 
procedure (14). In the SDGs, regulation between two genes is repre-
sented as a signed directed edge whose sign (positive or negative) rep-
resents whether the effect of the regulation is activation or inhibition, 
and whose direction represents what gene regulates what other gene. An 
outstanding feature of the DBRF-MEGN method is the utility of gene 
networks deduced by this method. These deduced gene networks can be 
compared directly with those identified through classic small-scale 
experiments in genetics and cell biology, and the deduced networks can 
be interpreted in the same way as those identified through small-scale 
experiments (14). This utility results from the fact that the SDG used in 
the DBRF-MEGN method is the most common representation of gene 
networks in genetics and cell biology, and also from the fact that the 
algorithm of the DBRF-MEGN method is based on logic that is most 
commonly used in genetics and cell biology to infer gene networks from 
small-scale gene-perturbation experiments (14).

In this chapter, we introduce the DBRF-MEGN method. First, we 
briefly describe the algorithm of this method. Second, we provide exam-
ples of application of the method to real large-scale gene expression 
profiles. Third, we show how to install and use the free software for the 
DBRF-MEGN method. Finally, we discuss the perspectives of the 
method.

2. Algorithm

The DBRF-MEGN method consists of five processes: i) difference-based 
deduction of initially deduced edges; ii) removal of nonessential edges 
from the initially deduced edges; iii) selection of the uncovered edges in 
main components from the nonessential edges; iv) separation of the 
uncovered edges in main components into independent groups; and 
v) restoration of the minimum number of edges from each independent 
group. The method deduces the most parsimonious SDGs consistent with 
gene expression profiles. Those graphs are called MEGNs.

2.1. Difference-Based Deduction of Initially Deduced Edges

The first process of the DBRF-MEGN method deduces signed directed 
edges (hereafter called edges) using an assumption that is commonly 
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used in genetics and cell biology (Figure 1A); i.e., there exists a positive 
(negative) regulation from gene A to gene B when the expression level 
of gene B in the condition where the activity of gene A is down-regulated 
is lower (higher) than in the control condition. For each possible pair of 
genes in the profiles, the process determines whether positive or negative 
regulation between those two genes exists and deduces all edges consis-
tent with both the assumption and the profiles by detecting the differ-
ence in expression level between the control condition and a condition 
where activity of a gene is perturbed (Figure 1B). These edges are called 
initially deduced edges.

2.2. Removal of Nonessential Edges from the Initially Deduced Edges

The initially deduced edges include not only those representing direct 
gene regulations but also those representing indirect gene regulations. 
We define the regulation from gene A to gene B as direct when gene A 
regulates gene B independently of other gene regulations; e.g., a tran-
scription factor A binds to upstream regulatory regions of gene B and 
increases the transcription of gene B. On the other hand, we define gene 
regulation as indirect when gene A regulates gene B as a result of other 
regulations; e.g., a transcription factor A increases the transcription of 
transcription factor C, which then increases the transcription of gene B. 
A desirable gene network consists only of direct gene regulations because 
indirect regulations do not correspond to molecular mechanisms of gene 
regulation. To choose edges representing direct gene regulations from 
the initially deduced edges, the second process of the DBRF-MEGN 
method removes all edges that are deductively explained by two other 
initially deduced edges (Figure 1C) because an indirect regulation is 
deductively explained by direct regulations. The resulting edges are 
called essential edges and the removed edges are called nonessential
edges.

2.3. Selection of Uncovered Edges in Main Components from 
Nonessential Edges

The essential edges sometimes fail to deductively explain all initially 
deduced edges (Figure 1D). Some edges represent direct gene regula-
tions even when they are deductively explained by two other edges. 
Therefore, the second process sometimes removes edges representing 
direct gene regulations, resulting in excess removal of edges. It is difficult
to know whether a nonessential edge represents direct or indirect gene 
regulation when only expression profiles corresponding to single-gene 
perturbations are available. Therefore, instead of looking for edges rep-
resenting direct regulations among the nonessential edges, the DBRF-
MEGN method compensates for excessively removed edges by restoring 
a minimum number of nonessential edges so that the resulting edges 
(the essential edges and the restored nonessential edges) can explain all 
initially deduced edges. Often, several sets of such nonessential edges 
exist, and the method deduces all sets. An SDG consisting of essential 
edges and the restored nonessential edges is a most parsimonious SDG 
consistent with given profiles; i.e., a MEGN.
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Figure 1. Example of the deduction of MEGNs from the gene expression pro-
files of gene deletion mutants. (A) Assumptions used in the DBRF-MEGN 
method. (B) Deduction of initially deduced edges. The matrix represents a set of 
expression profiles and the schematic represents a set of initially deduced edges. 
(C) Essential edges. Nonessential edges are gray-dotted. (D) Uncovered edges. 
Uncovered edges are gray-dotted and covered edges are black-dotted. (E) Exclu-
sion of uncovered edges in peripheral components. (F) Independent groups of 
uncovered edges in main components. For each group, the minimum number of 
edges with which essential edges can explain all edges in the group are shown. 
(G) MEGNs of the profiles. Combinations of the minimum numbers of edges of 
independent groups produce all MEGNs.
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The computation of the process described for deducing MEGNs is 

bounded by n C I S iI Si

m
i

3

0 −( )=∑ ⋅ − −( ), where n is the number of genes 

in the profiles, m is the number of nonessential edges to be restored, I is
the number of initially deduced edges, and S is the number of essential 
edges. This computation is impractical, however, because (I−S)Cm increases
rapidly as I − S and/or m increase. To reduce the computational cost, the 
third process of the DBRF-MEGN method distinguishes nonessential 
edges that have a chance to be included in the MEGNs from those that 
do not, before selecting the sets of nonessential edges to be restored. This 
process consists of two subprocesses: (a) selection of uncovered edges 
and (b) selection of uncovered edges in main components. The resulting 
nonessential edges are called uncovered edges in main components. 
From these edges, the later processes of the method select edges that 
are included in the MEGNs. The process reduces the computa-

tional cost of deducing MEGNs to n C U iUi

m
i

3

0=∑ ⋅ −( ), where U is the 

number of uncovered edges in main components.

2.3.1. Selection of Uncovered Edges
The first subprocess distinguishes the nonessential edges that are deduc-
tively explained by the essential edges from those that are not. Those 
edges are called covered edges and uncovered edges, respectively.

2.3.2. Selection of Uncovered Edges in Main Components
The second subprocess distinguishes the uncovered edges that have a 
chance to be included in the MEGNs from those that do not (Figure 1 
E). Those edges are called uncovered edges in main components and
uncovered edges in acyclic components, respectively. The uncovered 
edges in peripheral components are selected as follows (Figure 1E): (i) 
select uncovered edges that do not deductively explain any uncovered 
edges; (ii) select uncovered edges that deductively explain uncovered 
edges that have been selected, but that do not deductively explain those 
that have not; and (iii) repeat (ii) until no new uncovered edges are 
selected. The selected uncovered edges are uncovered edges in periph-
eral com-ponents, and those that are unselected are uncovered edges in 
main components.

2.4. Separation of Uncovered Edges in Main Components into 
Independent Groups

To further reduce the computational cost, the fourth process of the 
DBRF-MEGN method separates uncovered edges in main components 
into independent groups so that edges to be restored can be deduced 
independently for each group (Figure 1F). The independent groups are 
generated so that the edges in one group do not deductively explain 
those in other groups. The process reduces the computational cost of 

deducing MEGNs to Di

m
i jj

t
jj

j C D i n
== ∑∑ ⋅ −( )⋅

11

3, where t is the number 

of independent groups, nj is the number of genes in the jth independent 
group, Dj is the number of edges in the jth independent group, and mj is
the number of edges in the jth independent group to be included in a 
MEGN.
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2.5. Restoration of Minimum Number of Edges from Each 
Independent Group

For each independent group, the fifth process of the DBRF-MEGN 
method deduces the minimum number of edges with which essential 
edges can deductively explain all edges in the group. All sets of such 
edges are deduced for each group. The essential edges and any possible 
combination of these sets from each group generate a MEGN of the 
profiles (Figure 1G).

3. Application

In this section, to show the applicability and validity of the DBRF-MEGN 
method, we provide examples of application of the DBRF-MEGN method 
to real large-scale gene expression profiles (14). In these examples, a 
subset of large-scale gene expression profiles obtained from Saccharomy-
ces cerevisiae (9) was used. The set of profiles comprises the expression 
levels of 265 genes measured in 265 gene deletion mutants corresponding 
to those genes. Each expression level accompanies a p-value, which 
corresponds to the significance of the difference from the expression level 
in the wild type (9). We considered the expression level in the deletion 
mutants to be increased (decreased) when the level significantly differed 
from that in the wild type at a p-value less than a predefined threshold.

3.1. Applicability to Large-Scale Gene Expression Profiles

The computational cost of use of the DBRF-MEGN method depends 
on the p-value threshold because the numbers of initially deduced edges, 
essential edges, and edges in MEGNs depend on the p-value threshold. 
An optimal p-value threshold for the method is 0.01 (14). To show the 
applicability of the DBRF-MEGN method to large-scale gene expres-
sion profiles, we provide examples of the computational costs of use of 
the DBRF-MEGN method using various p-value thresholds (14). The 
DBRF-MEGN method deduced 829 initially deduced edges, 675 essen-
tial edges, and a unique MEGN consisting of those 675 essential edges 
from the expression profiles for the 265 S. cerevisiae genes when the p-
value threshold was 0.01 (Figure 2). The computation took approxi-
mately 0.02 s on an Intel Pentium 4 PC (2.8 GHz, 1 GB RAM).

Essential edges failed to explain the initially deduced edges when the 
p-value threshold was 0.03 or 0.05. In these two cases, the method suc-
cessfully deduced 2 and 16,384 MEGNs, consisting respectively of 964 
and 1,090 edges, where 1,341 and 1,666 initially deduced edges and 963 
and 1,076 essential edges, respectively, were deduced. The computation 
took approximately 0.02 s and 0.75 s, respectively. These examples show 
the applicability of the DBRF-MEGN method to real large-scale gene 
expression profiles.

3.2. Validity of MEGNs

MEGNs deduced by the DBRF-MEGN method can be directly com-
pared with gene networks identified through classic small-scale 
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experiments in genetics and cell biology. To show the validity of the 
DBRF-MEGN method, we will compare the MEGN deduced from the 
expression profiles for the 265 S. cerevisiae genes and the known gene 
network in a pheromone response pathway reported in the literature 
(14). The pheromone response pathway is one of the most thoroughly 
identified cellular cascades in S. cerevisiae.

First, we focus on transcriptional regulation by Ste12p, which is the 
central transcription factor in the pheromone response pathway. Because 
the expression profiles used in the DBRF-MEGN method were a collec-
tion of mRNA levels in gene deletion mutants, an edge directing from 
STE12 was expected to represent a transcriptional regulation by Ste12p. 
Among the 265 genes in the profiles, 6 are transcriptional targets of 
Ste12p (Figure 3A) (16–21). The method cannot deduce self-regulations 
because of its assumption (see Figure 1A for a schematic of this assump-
tion). Therefore, we expected that five positive edges directing from 
STE12 to FAR1, FUS3, SST2, STE2, and TEC1 would be deduced (Figure 
3B). As expected, the method deduced five edges directing from STE12,
all five of which were positive edges directing to each of those five genes 
(Figure 3C).
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Figure 2. MEGN deduced from the expression profiles of 265 Saccharomyces
cerevisiae genes. The network consists of 265 genes and 675 edges, of which 230 
are positive and 445 negative. Graphical display of the gene network was created 
using the Osprey program (15).
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Next, we focus on the posttranscriptional regulation cascade that regu-
lates Ste12p activity. Deletion of a single gene in this cascade increases 
(decreases) Ste12p activity, which then increases (decreases) the STE12
mRNA level, because Ste12p self-increases its own transcription (20). 
The expression profiles used were a collection of mRNA levels in gene 
deletion mutants. Therefore, an edge directing from a gene to STE12 was
expected to indicate the existence of a posttranscriptional regulation 
cascade from this gene to Ste12p, unless the gene was a transcriptional 
regulator. Among 265 genes, 11 are involved in the posttranscriptional 
regulation cascade that regulates Ste12p activity (Figure 3A) (21–23). 
However, deletion of 6 of those 11 genes was not expected to affect 
the STE12 mRNA level for the following reasons: STE2 encodes the 
receptor for α-factor (24); the receptor would not have been activated 
in any of the experiments in which gene expression profiles were 
measured because MATa cells, which do not secrete α-factor (25), were 
used in these experiments; deletion of STE20 does not completely block 
pheromone-induced Ste12p activation, suggesting that an unidentified
pathway bypasses Ste20p activity (26); and FUS3 and KSS1 (27) and 
DIG1 and DIG2 (22) are functionally redundant. Therefore, we expected 
that five positive edges directing to STE12 from STE4, STE5, STE7,
STE11, and STE18 would be deduced by the DBRF-MEGN method 
(Figure 3B). As expected, the method deduced five edges directed to 
STE12, all five of which were positive and directed from each of these 
five genes (Figure 3C). These results show the validity of the DBRF-
MEGN method.

The validity of the DBRF-MEGN method is supported by analyses of 
two other cellular pathways, i.e., the general amino acid control system 
and the copper and iron homeostasis system (14).

4. Software

In this section, we briefly describe how to install and use the free software 
for the DBRF-MEGN method. The section is divided into four sub-
sections: i) hardware and software; ii) format of the input file; iii) run-
ning the software; iv) format of the output file. Information on obtaining 
the software is available at our Web site (http://www.so.bio.keio.ac.jp/
dbrf-megn/).

Figure 3. Validation of MEGN in the Saccharomyces cerevisiae pheromone
response pathway. (A) Known pheromone response pathway. Six transcriptional 
regulations (black edges) and 14 posttranscriptional regulations (gray edges) 
were reported previously (16–23). (B) Expected edges in the pheromone response 
pathway. Five edges from STE12 to transcriptional targets (black edges) and five
edges from posttranscriptional regulations to STE12 (gray edges) were expected. 
Six edges from posttranscriptional regulators to STE12 (dotted gray edges) were 
not expected because of the experimental conditions or the redundancy of gene 
regulation. (C) MEGN in the pheromone response pathway. Five expected edges 
from STE12 (black edges) and five expected edges to STE12 (gray edges) were 
deduced.

▲
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4.1. Hardware and Software

The program for the DBRF-MEGN method runs under Windows or 
Linux platforms on a typical IBM-compatible personal computer. The 
code for the DBRF-MEGN method is written in ANSI C++. Therefore, 
libraries for C++ are needed to run the program. Although we have not 
confirmed whether the program runs on other platforms, it should run 
on platforms based on UNIX that have a C++ compiler (e.g., Mac OS X 
or Solaris).

4.2. Format of Input File

The program requires an input file that is in tab-delimited text (Figure 
4A). The first row lists the genes whose activities are perturbed (up- or 
down-regulated). The first column lists the genes whose expression levels 
are measured. The number and order of genes in the two lists must be 
the same. Each element of the remaining rows or columns represents the 
log-ratio of the gene expression level under the condition where the 
activity of the gene is perturbed relative to that in the control condition. 

Figure 4. Format of data files of the DBRF-MEGN method. (A) Example of 
the input file for gene deletion mutants. (B) Output file for essential edges. 
(C) Output file for restored edges.
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When the expression level under the condition where activity of the gene 
is down-regulated is significantly higher (lower) than in the control con-
dition, the corresponding element has a plus (minus) value. When there 
is no significant difference in gene expression level between the control 
condition and the condition of gene perturbation, the corresponding 
element has the value of zero.

4.3. Running the Software

The program runs by using the command “dbrf_megn [OPTION] <data
file>” from the command line. The [OPTION] will be “-D” or “-U,”
which indicates that the following <data file> is a set of gene expression 
profiles corresponding to the down- or up-regulation of genes, respec-
tively. The <data file> is the input file whose format is described in the 
previous section. When the MEGN consists only of the essential edges, 
the program generates only one file, named essential_edges-<data file>,
which includes a list of the essential edges. When a MEGN consists of 
the essential edges and the restored edges, the program generates two 
files, one named essential_edges-<data file>, which includes a list of the 
essential edges, and another named restored_edges-<data file>, which 
includes sets of the restored edges in independent groups.

4.4. Format of Output File

Each row of the essential_edges-<data file> represents a deduced essen-
tial edge, which is directed from the gene in the first column to that in 
the second column (Figure 4B). The third column represents the sign of 
the edge (P, positive; N, negative).

Each section of the restored_edges-<data file> corresponds to an inde-
pendent group (Figure 4C). Each row of each section represents a set 
of the minimum number of restored edges in the corresponding group. 
Each MEGN consists of the essential edges and a combination of one 
set from each of the independent groups.

5. Perspectives
MEGNs deduced by the DBRF-MEGN method allow us to obtain 
invaluable information for understanding cellular function. This is 
because the SDG used in the DBRF-MEGN method is the most common 
representation of gene networks in genetics and cell biology, and the 
algorithm of the DBRF-MEGN method is based on the logic most com-
monly used in genetics and cell biology to infer gene networks from 
small-scale gene perturbation experiments. For example, a procedure has 
been proposed for predicting transcriptional targets and modulators of 
the transcriptional activity of transcription factors from MEGN (14). 
MEGNs can be applied to various analyses of network structures (28,29). 
These analyses will provide invaluable insight into the nature of gene 
networks.

The DBRF-MEGN method is a powerful analytical tool, not only for 
large-scale gene expression profiles but also for small- or medium-scale 
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gene expression profiles. The algorithm of the DBRF-MEGN method 
without the processes of Selection of the uncovered edges in cyclic com-
ponents from the nonessential edges and Separation of the uncovered 
edges in main components into independent groups is the procedure most 
commonly used in genetics and cell biology to manually infer gene 
networks from small-scale gene-perturbation experiments. However, 
the computation of the DBRF-MEGN method without these two 

processes is bounded by n C I S iI Si

m
i

3

0 −( )=∑ ⋅ − −( ), and the computation 

increases rapidly as I − S and/or m increase. This computational cost 
indicates that manual inference of gene networks is impractical even for 
small- or middle-scale gene expression profiles. The DBRF-MEGN 
method deduces all of the exact solutions for the most parsimonious 
SDGs consistent with given expression profiles. Therefore, use of the 
DBRF-MEGN method ensures accurate analysis of small- and medium-
scale gene expression profiles.

Deduction of MEGNs from more than one set of gene expression 
profiles is a new research strategy in systems biology. Both positive and 
negative edges are sometimes deduced in the same direction between 
the same pair of genes when more than one set of gene expression 
profiles is analyzed by the DBRF-MEGN method; e.g., positive and 
negative edges from gene A to gene B are deduced from gene expression 
profiles of deletion mutants and of overexpression of genes, respectively. 
Interestingly, these edges may reflect nonlinearity of gene regulation. 
Comparisons of MEGNs deduced from different sets of gene expression 
profiles will provide new opportunities for understanding the nonlinear 
dynamics of gene regulatory networks in cells.

Integration of diverse functional genomic data is a major approach in 
current gene network inference (30,31). Various functional genomic data 
are available. For example, the chromatin immunoprecipitation assay 
provides protein–DNA associations (20,28). Two-hybrid systems and 
in vivo pull-down assay provide protein–protein interactions (32–35). 
Fluorescent labeling technology provides information on protein localiza-
tion (36). Integration of MEGNs and these functional genomic data will 
provide information invaluable to basic biology and drug discovery.
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Systematic Determination of 

Biological Network Topology: 
Nonintegral Connectivity 

Method (NICM)
Kumar Selvarajoo and Masa Tsuchiya

Summary

The understanding of dynamic behavior of biological networks for a 
given stimulus is a huge challenge. The usage of static pathway maps 
under these circumstances is clearly insufficient to address key issues like 
regulatory behavior or oscillatory features of the network. We have 
devised a computational methodology called the Nonintegral Connectiv-
ity Method (NICM), which does not rely on kinetic parameters and 
is not based on differential equations. NICM systematically analyzes 
the dynamic phenotype of a set of network species, to a given external 
perturbation, and determines their local reaction connectivity (network 
motif). As a proof-of-concept, we show that NICM successfully detects 
several network motifs by analyzing the response profiles of constituent 
reactants constructed using mass action kinetics with pulse perturbation. 
To test the applicability on a biological system, we analyzed published 
phenotypes of yeast glycolytic metabolites. Our simulation suggests 
that a previously unattended step, the downstream reaction of fructose 
1,6-bisphosphate (FBP), becomes the rate-limiting step in glucose 
pulse experiments. The discovery of such key regulatory steps could 
pave the way for systematic identification of novel targets for drug 
development.

Key Words: Biological network; connectivity method; linear response; 
glycolysis; Saccharomyces cerevisiae.

1. Introduction

Despite the numerous integrated studies (genomics, proteomics, and 
metabolomics) of cellular systems, we have not made significant progress 
in the understanding of even the simplest dynamic behavior of 
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organisms, e.g., cell growth. One of the key reasons behind this slow 
progress is deeply rooted in the predominant application of steady-state 
static interaction maps of biological reactions to model the constantly 
evolving in vivo cellular system. To circumvent the problem, it becomes 
increasingly important to study the temporal topological changes of cel-
lular networks under various kinds of perturbations, and to systemati-
cally identify the modifications in cellular interactions (1–5).

One particular area in biology that has received elaborate theoretical 
foundation is the conceptualization of biochemical network connectivity 
and regulation. However, as mentioned above, most, if not all, of these 
approaches use static interaction maps, steady-state conditions, and in
vitro parameters to infer the properties of the network (6–10). Although 
these approaches have been instrumental to reveal biological properties, 
such as robustness, oscillatory behavior, and optimal growth rates, the 
understanding of cellular adaptation to environmental or physical 
changes (perturbations) has not been defined successfully. One of the 
main reasons for this situation has been the general lack of quantitative 
data of biological entities in a dynamic fashion. Recently, with the prog-
ress in the development of experimental methodologies, we are now 
presented with renewed opportunity to develop and analyze novel com-
putational and mathematical approaches (4,15,16). For instance, we can 
now measure in vivo dynamics of numerous metabolites within cells at 
the same time, to a given external perturbation (17–19). This kind of 
measurement presents us with better insights into the molecular response 
of the cells in regulating any external influence.

In this report, we discuss the development of a novel computational 
methodology, NICM, which promises to systemically detect the dynamic 
connectivity of unknown or partially known biological/chemical network 
in a pulsed, perturbed system (22,23). NICM does not require a priori
knowledge of the connectivity of reactants in a system. NICM requires
only the reactants’ dynamic concentration profile, and, utilizing formal-
ized mathematical rules (called connectivity rules), it determines the 
relationship between all the reactants in the system. The NICM expres-
sions constitute different combinations of depletion and formation wave 
terms to represent the propagation of pulse perturbation in various kinds 
of network motifs. As proof-of-concept, we used NICM to re-infer the 
original reaction network set up using pulse perturbation on a simple 
mass action kinetic system. In all cases, we were able to successfully 
reconstruct the original topology of the network motif. We then described 
the ability of NICM to analyze the dynamics of yeast glycolytic metabo-
lites to an external perturbation.

2. Methods

2.1. NICM

The NICM is based on devising a basic principle for the response profile
of species in a biological network that undergoes an upstream impulse 
perturbation. To illustrate the concept, let us give an impulse a to a 
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first-order reaction constituting reactants A and B. The rate of change of 
A and B are:

dA
dt

k A= − 1 (1)

dB
dt

k A= 1 , (2)

where k1 is the rate constant with initial conditions (t = 0) A = Ao + a, B
= Bo. The dynamic concentration profiles become:

 A = ae−k1t + Ao (3)

 B = a(1 − e−k1t) + Bo (4)

We notice from equations (3) and (4) that A possesses a depletion 
wave term, and B contains a formation wave term exclusively (by the 
observation of their exponential terms), and both reactants have the 
same rate constant.

Suppose we now include another reaction for B (with rate constant 
k2). The rate of change of B becomes (A remains unchanged):

A B
k1 k2

α (t = 0) 

dB
dt

k A k B= −1 2 . (5)

Integrating equations (1) and (5) yields:

B
k

k k
e e Bk t k t

o=
−

−( ) +− −1

2 1

1 2 . (6)

We factorize (6) in respect to e−k1t if k2 > k1 (or e−k2t if k1 > k2) and 
obtain:

B
k

k k
e e Bk k t k t

o=
−

−( ) +− −( ) −1

2 1

1 2 1 1 . (7)

We use equation (7) as a foundation to set up a generalized expression 
for the concentration profile of a reactant X, acting along a pathway, to 
constitute both the formation and depletion wave terms:

o
tptp XeeX +−= −− 21 )1(α

formation 
coefficient

perturbation
coefficient

depletion
coefficient

initial
condition

(8)

The perturbation coefficient, a, represents the strength of perturbation, 
the formation coefficient, p1, represents the strength of formation wave, 

Insert 1
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and the depletion coefficient, p2, represents the strength of depletion 
wave. We named this method, for constructing mathematical expressions 
for a reactant’s dynamic concentration profile based on detecting the 
formation and depletion wave terms, the NICM. This is distinct from the 
conventional way of integrating the velocity expressions to determine a 
reactant’s concentration profile, as in equations (1) and (2).

Equation (8) can also be simplified into:

 X = a(t)e−p2t, (9)

where a(t) = a(1 − e−p1t). If, however, X receives an instanteous ao pulse
perturbation, then a(t) = ao and equation (9) becomes:

 X = aoe−p2t. (10)

Using the general form of equation (8), we will describe how we 
develop concentration profiles for connected systems (NICM). For 
example, let us assume A (zero initial concentration) has a depletion 
wave term for an ao pulse perturbation as depicted in insert 2.

Using equation (10) we obtain:

 A = aoe−p1t. (11)

For the case of B, as in insert 3, using equation (8) we obtain:

B
p3p2

 B = bo(1 − e−p2t)e−p3t (12)

If A and B belong to a connected system, using conservation of mass we 
obtain ao = bo and p2 = p1. Therefore, equations (11) and (12) now 
become

 A = aoe−p1t (13)

 B = ao(1 − e−p1t)e−p3t (14)

In this way, we see that the depletion coefficient of A (p1) is equal to the 
formation coefficient of B.

A
p1

αo (t = 0) 

Insert 2

Insert 3

A B
p1 p3

αo (t = 0) 

Insert 4
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2.2. Application of NICM

NICM requires time-series concentration profile of reactants in a system 
to a given stimulus. Using this information only, we identify whether a 
reactant constitutes a formation wave term, a depletion wave term (or a 
combination of both). By comparing the number of formation and/or 
depletion wave terms present and using reaction connectivity rules (see
section 2.3), we construct a reaction network between the reactants. As 
proof-of-concept, we compare the performance of NICM with com-
monly used mass action kinetic analysis on various types of network 
motifs. We emphasize that when comparing mass action kinetics with 
pulse perturbation, our method is only an approximation to the true 
solution. However, by analyzing the dynamics of yeast glycolysis in vivo,
which is a highly nonlinear pathway, we show that our method is not 
restricted to linear kinetics alone (see section 3). In short, our method is 
instrumental to the identification of local connectivity of each reactant 
and the connection of a series of reactants into a pathway (construction 
of network) (Figure 1).

Step 1:
Perform time-series  

experiments

Determine Individual 
Features

Step 2: 

Step 3: 

Local Connectivity 

Select/Guess
Connectivity 

Step 4: 

A C

Fitness ? 

Good

Bad
Step 5: 

B

Obtain 3 or 4 dataset 
randomly 

Step 6: 

A B C 

Randomly change 
1 dataset

i < n 

i > n 

i = i +1 n
=3

Step 7: 
B A C

Larger Connectivity 

F E D

G

B A C

Figure 1. Flowchart for the identification of local network connectivity or motif 
using the NICM methodology. See text for details. n is the number of possible 
connectivity motifs.
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To illustrate the NICM procedure, let us suppose we have a stimulated 
system and are able to obtain various time variant concentration profile
of reactants whose connectivity is unknown (Figure 1, Step 1). We 
first select, randomly, 3 or 4 reactants’ response profile at a time (Figure 
1, Step 2). For these reactants, we determine for each reactant whether 
they possess formation wave term, depletion wave term, or a combina-
tion of both (Figure 1, Step 3). Next, using this information, we 
will connect the chosen reactants to form possible network motifs. 
Using each motif, we will derive the NICM mathematical expressions 
(e.g., linear-chain motif equations (15–17), diverging motif equations 
(22–25), etc.; see section 2.3). We then perform the fitting process 
(Figure 1, Step 5). The fitness evaluation is done using a genetic algorithm 
(26,27) and least square fit (28) (see Appendix 1). We perform fitness
for each reactant profile and sum them together (for the selected 3 
or 4 reactants). If the combined fitness is below a set tolerance as required 
(see Appendix 1), the selected motif (local connectivity) is accepted 
(Step 6), otherwise, a different motif is chosen (Step 4). If no acceptable 
result is obtained (fitness above tolerance limit) for all possible 
motifs, we move to Step 2 and exchange one dataset randomly. We 
perform steps 3–5 repeatedly until we obtain a good fitness result and 
select the motif (Step 6). To consider larger networks (e.g., 20 reactants), 
we will first search for another reactant that connects to the reference 
motif obtained from Step 6. We, again, evaluate the overall optimal 
fitness value including this new reactant (e.g., reactant D; Figure 1). We 
then anchor this new reactant and search for subsequent network motif 
where it “attaches.” In other words, we build additional motifs attached 
to the reference motif (motif–motif connection) and form a bigger 
module. By continuing this process of connecting modules to modules, 
we can eventually obtain the entire connectivity (Figure 1, Step 7). In 
this manner, we are able to reduce the number of combinatorial com-
plexity of network connectivity, and the entire process of Figure 1 can 
be implemented using an automated system, such as genetic program-
ming (24,25).

To demonstrate NICM (Steps 1 to 6 only), we created a theoretical 
motif that contain 3 reactants and produced time-series plots of their 
concentration profile, using mass action kinetics with pulse perturbation 
and predefined rate constants (Figure 2). By simply using this informa-
tion and applying NICM, we successfully reconstructed the original 
network (linear-chain motif with reversible step, see section 2.3). How-
ever, when we deliberately used an incorrect connectivity (linear-chain 
motif without reversible step) to fit the data, the accuracy of the result 
is very poor (Figure 2).

We now show the development of NICM connectivity rules for each 
reactant in various types of reaction motifs (29), such as linear pathways, 
diverging pathways, reversible steps, and feedback/forward network 
using NICM. Note that in our definition of motif, to reduce the total 
number of possible motifs, we include reversible steps as part of the 
parent motif (see sections 2.3.1 and 2.3.4). We perform proof-of-principle 
simulations and compare the results with mass action kinetic models 
using pulse perturbation for each network motif.
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2.3. NICM Connectivity Rules

2.3.1. Linear-Chain Motif
Let us look at simple two-reaction linear pathway. Using NICM (with
the aid of equations (13) and (14)) we can represent, for ao pulse per-
turbation, the time-series concentration profiles of A, B, and C as:
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Figure 2. Generation of time-series plots for a linear-chain motif with reversible 
step using mass action kinetics with pulse perturbation (see insert 14). Unit pulse 
(α = 1) is applied to A with rate constants k1 = 0.15, k2 = 0.03, and k3 = 0.1. 
(A) The simulation results of NICM using linear-chain motif (see insert 5) 
(p1 = 0.033 and p2 = 0.02, obtained using GA, equations [15–17]). (B) The simula-
tion results of NICM using linear-chain motif with reversible step (see insert 14) 
(p1 = 0.115, p2 = 0.0165, p3 = 0.074, and b = 0.43, equations [30–32]). The maximum 
error for (A) is 42%, and for (B) is 4% (see Appendix 1 for the definition of error). 
The x axis represents time and y axis represents concentration, both in arbitrary 
units. For all subsequent plots we adopt the same representation of the axes 
(x, time; y, concentration of reactant). Solid lines indicate the mass action kinetics 
with pulse perturbation, and dotted lines indicate the result using NICM.
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 A = aoe−p1t (15)

 B = a(1 − e−p1t)e−p2t (16)

 C = a(1 − e−p1t)(1 − e−p2t) (17)

Because B and C are connected, the depletion coefficient of B is equal 
to the formation coefficient of C.

Although, equations (15) to (17) were easily derived using NICM, they 
do not represent the true solution (when compared to mass action kine-
tics). Only up to the simple case of equation (7) does our basic rule yield 
an exact solution; beyond this, the solution approximates the true solution 
(linear response solution). Nevertheless, the approximation generally yields 
marginal difference (the error is usually less than 10%; see Appendix 1) 
when compared to the true solution for a given set of rate constants. This 
discrepancy is not significant, as experimental variations are usually much 
larger (30). However, under certain circumstances, for example, when k1 =
2k2 or k2 = 2k1, the NICM expressions become equivalent to the solution 
of mass action kinetics with impulse perturbation. For example, if we take 
a = 1.0, k1 = 0.1, and k2 = 0.2, we obtain p1 and p2 = 0.1 (using GA (26,27)) 
with no error between the two methods; i.e., exact solution (Figure 3).

2.3.2. Merging Motif
Let us look at a situation where two reactants react independently within 
a pathway.
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We notice that A and B have depletion terms only, C posseses both for-
mation and depletion wave terms, and D has only depletion wave term. 
Now, individually perturbing A by a and B by b and applying NICM, we 
can represent each reactant’s concentration as:

 A = ae−p1t + Ao (18)

 B = be−p2t + Bo (19)

 C = [a(1 − e−p1t) + b(1 − e−p2t)]e−p3t + Co (20)

 D = [a(1 − e−p1t) + b(1 − e−p2t)](1 − e−p3t) + Do (21)

where p1, p2, and p3 are the depletion coefficients for reactions A to C,
B to C, and C to D, respectively. Ao, Bo, Co and Do represent the initial 
equilibrium concentration. Note, we add the formation terms for C and
D, as the two formative reactions are independent to each other.

Putting a and b = 1 and Ao = Bo = Co = Do = 0 in equations (18–21), 
we are only required to determine p3 because, according to equations 
(18–19), p1 = k1 and p2 = k2. In Figure 4, we compared the NICM perfor-
mance against mass action solutions and produced closely matched 
results.

2.3.3. Diverging Motif
Consider now reactant B producing C and D (assume D has an initial 
equilibrium concentration Do), perturbing A by a and applying NICM:
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Figure 3. Comparison of mass action kinetics with pulse perturbation and NICM
for linear-chain motif (insert 5). The time variant plots of A, B, and C were gener-
ated using mass action kinetics with unit pulse perturbation and rate constants 
k1 = 0.1 and k2 = 0.2. We then used the linear-chain motif expressions of NICM
to fit the data. The fitting process involves choosing the relevant coefficients in 
the NICM expressions (equations [15–17]) that gives the lowest fitness value (see
Appendix 1). We obtained p1 = 0.1 and p2 = 0.1. Solid lines indicate mass action 
kinetics solution, and dotted lines indicate the result obtained using NICM. Note 
that we cannot distinguish the two corresponding lines, as they overlap each 
other (in this case, NICM yields exact solution to mass action solution).
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 A = ae−p1t + Ao (22)

 B = a(1 − e−p1t)e−p2t + Bo (23)

 C = b(1 − e−p1t)(1 − e−p2t) + Co (24)

 D = d(1 − e−p1t)(1 − e−p2t) + Do (25)

The perturbation coefficient, a, is shared by the reaction B to C and B
to D, i.e., the actual perturbation is split by the diverging pathway. There-
fore, we have introduced new perturbation coefficients for C and D,
namely, b and d where in a mass conserved system, (b + d) must be equal 
to a. The proportion of a and b will be determined by the actual rate of 
reaction B to C and B to D. For example, if the rate for B to C is greater 
than B to D, then a must be greater than b. The formation coefficient
remains the same between reaction B to C and B to D to satisfy the law 
of mass conservation.

Letting a = 1 and Ao = Bo = Co = Do = 0 in equations (22–25), the 
maximum error between the two methods for all reactants is approxi-
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Figure 4. Comparison of mass action kinetics with pulse perturbation and NICM
for a merging motif (insert 9). The time-variant plots of A, B, C, and D were
generated using mass action kinetics with unit pulse perturbation and rate con-
stants k1 = 0.15, k2 = 0.1, and k3 = 0.2. Merging motif expressions of NICM (equa-
tions [18–20]) provided a good fit (maximum error is 3%) to the data when p1 =
0.15, p2 = 0.1, and p3 = 0.107. Solid lines indicate mass action kinetics solution, 
and dotted lines indicate the result obtained using NICM.
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mately 2% (Figure 5). In addition, by looking at just the perturbation 
coefficients, b and d, we could decide which branching pathway is domi-
nant (from Figure 5, pathway B to D is approximately 10 times more 
dominant than B to C).

2.3.4. Linear-Chain Motif with Reversible Step
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Figure 5. Comparison of mass action kinetics with pulse perturbation and NICM
for a diverging motif (insert 10). The time variant plots of A, B, C, and D were
generated using mass action kinetics with unit pulse perturbation and rate con-
stants k1 = 0.05, k2 = 0.01, and k3 = 0.1. The diverging motif expressions of NICM
(equations [22–25]) provided a good fit (2% error) when p1 = 0.05, p2 = 0.05,
a = 0.09, and b = 0.91. Solid lines indicate mass action kinetics solution, and 
dotted lines indicate the result obtained using NICM.

The development of equations through NICM for reversible reactions is 
generally not straightforward. It is best to describe the reactants’ con-
centration profiles by first decomposing the reaction steps into a sequence 
of events that represents the propagation of the perturbation a:
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Consider first reactant A only. We split A into two parts, marked (i) 
and (ii). For each part, we could construct the following relations:

 A(i) = ae−p1t (26)

 A(ii) = B*(1 − e−p3t) = b(1 − e−p1t)(1 − e−p3t) (27)

 A = A(i) + A(ii) = ae−p1t + b(1 − e−p1t)(1 − e−p3t) (28)

Some portion of B (B*) is converted back to A, B* = b(1 − e−p1t) so as to 
obey the law of mass conservation (A* + B* = a(1 − e−p1t)), which is equiva-
lent to the formation term of B in the absence of the reversible step.

For reactant B:

For A:

 B(i) = B*e−p3t = b(1 − e−p1t)e−p3t (29)

 B(ii) = A* = (a − b)(1 − e−p1t) (30)

 B = B(i) + B(ii) = b(1 − e−p1t)e−p3t + (a − b)(1 − e−p1t) (31)

Now consider the time event propagation of pulse perturbation for A
and B:
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A

p1p3p1

*A*B
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We can show that:

 A = ae−p1t + b(1 − e−p1t)(1 − e−p3t)e−p2t (32)

B = ⎣b(1 − e−p1t)e−p3t + (a − b)(1 − e−p1t)⎦e−p2t (33)

 C = a(1 − e−p1t)(1 − e−p2t) (34)

To demonstrate the applicability of equations (32–34) for reversible 
reactions, we built a mass action kinetic model with pulse perturbation 
and rate constants k1 = 0.1, k2 = 0.001, k3 = 0.1, which is a bottleneck situ-
ation; i.e., the flux to C is very low as compared to the flux to B. Figure
6 shows the comparison of the two simulation results. The maximum 
error between the two results for all reactants is approximately 9%.

2.3.4.1. Other Considerations: Our method can also be extended to 
include feedback/feedforward motifs and oscillatory behavior (when 
depletion and formation coefficient, p, becomes a complex number).

2.3.5. Feedback Motif
If the concentration of C increases the rate of reaction of A to B, we 
have a positive-feedback loop:
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Figure 6. Comparison of mass action kinetics with pulse perturbation and NICM
for a linear-chain motif with reversible step (insert 14). The time-variant plots of 
A, B, and C were generated using mass action kinetics with unit pulse perturba-
tion and rate constants k1 = 0.1, k2 = 0.001, and k3 = 0.1. The expressions of NICM
(equations [32–34]) provided total error of approximately 9% when p1 = 0.115,
p2 = 0.0005, p3 = 0.125, a = 1.0, and b = 0.5. Solid lines indicate mass action kinetics 
solution, and dotted lines indicate the result obtained using NICM.
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B C
p2

A
p1

+

We could represent this scenario as following:

 A = A1e−[p1*(C−Co)]t + Ao (35)

 B = A1(1 − e−[p1*(C−Co)]t)e−p2t + Bo (36)

 C = A1(1 − e−[p1*(C−Co)]t)(1 − e−p2t) + Co (37)

The depletion coefficient p1 of A (e.g., in equation (11)), in the absence 
of any feedback mechanism, has been replaced with p1*(C − Co), that is, 
replacing a constant coefficient with a linear function coefficient (an 
assumed relation to demonstrate the feedback activation). We use this 
linear relation to show that as C increases, it increasingly activates the 
reaction A to B. However, in the situation that 0 < p1 < 1 (usual case) 
and (C − Co) < 1, we need to multiply the term p1*(C − Co) by a constant 
factor to make it >1. Of course, feedback regulation could be a complex 
process and may involve a nonlinear type of regulation. Here, we have 
stuck to a simple case to demonstrate the capability of NICM to consider 
feedback properties.

2.3.6. Feedforward Motif
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D
p3

_

In a negative-feedback system, increasing concentration of B negatively
regulates the conversion of C to D. For such a system, we represent the 
various reactants’ concentration profile as:

 A = A1e−p1t + Ao (38)

 B = A1(1 − e−p1t)e−p2t + Bo (39)
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In the event that (B − Bo) = 0, we will set C = Co.
We next show the applicability of NICM to better understand the 

dynamic features of yeast glycolytic metabolism under glucose pulse 
perturbation.
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3. Analysis of Yeast Glycolytic Network

With the recent advent of sophisticated time-course intracellular pheno-
type measuring tools, it now becomes possible to observe the global 
dynamic phenotype of biological networks in vivo (17–19). The genera-
tion of these data is indispensable, as it allows one to analyze algorithm 
over a range of period, rather than the traditional steady-state analysis.

We attempted to test our methodology on a section of the glycolytic 
pathway of Saccharomyces cerevisiae. We chose glycolysis because it is 
well studied and is known to contain highly nonlinear features, such as 
feedback and feedforward loops (Figure A2.1, Appendix 2). This pro-
vides us with the opportunity to test the applicability of NICM on bio-
logical systems.

We obtained the experimental time-course response of the glycolytic 
phenotype of S. cerevisiae to a glucose pulse from available literature 
(17). Although the dataset is not sufficient for us to reconstruct the entire 
glycolytic pathway connectivity using all of our theoretical motifs (see
section 2.3), we intend to demonstrate the applicability of our technique 
to decipher some key properties of the biological regulation that occurs 
during the experimental perturbation. We wanted to know whether our 
technique is able to capture new knowledge of S. cerevisiae glycolysis
that had been previously inferred.

Before we use our technique on the dataset, we ensured the reproduc-
ibility of the dataset by searching for other published sources that per-
formed similar experiments. We found a paper from a different group that 
reported similar phenotype for a similar glucose pulse experiment (19).

Figure A2.2 (Appendix 2) shows some glycolytic phenotype of S. cere-
visiae. By simple visual inspection or comprehending the article, one 
would not be able to fully understand the result of the study. We per-
formed our methodology (Figure 1) on this dataset but in this paper; we 
restrict our analysis to the first 3 metabolites, glucose-6-phosphate (G6P), 
fructose-6-phosphate (F6P), and fructose 1,6-bisphosphate (FBP) only. 
As we do not have the information of other intercepting pathways to 
these metabolites, e.g., the pentose phosphate pathways (PPP), we started 
our analysis by assuming that our local network is of the linear chain 
motif (see section 2.3) that is, → G6P → F6P → FBP → etc., equation 
(12). We next performed the fitting process (Figure A2.3, Appendix 2) 
and obtained the following expressions with the best fitness value

G6P = 4.80(1 − e−0.230t)e−0.016t + 0.90

F6P = 2.01(1 − e−0.130t)e−0.037t + 0.17

FBP = 2.68(1 − e−0.258t)e−0.0003t + 0.11

Despite restricting our analysis to linear motifs, we obtained a very 
interesting result. We notice for G6P, the depletion coefficient is much 
smaller than the formation coefficient of F6P (equation (8)). If we assume 
F6P is solely produced by G6P (as we have done through the application 
of linear-chain motif), then the formation coefficient value of F6P should 
be similar to that of the depletion coefficient of G6P (p2 of equation (8)). 
This could imply that the faster formation of F6P could be due to other 
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intercepting reactions that we have not factored into our initial motif 
assumption. This result is justified by the fact that F6P is also known to 
be produced by PPP, which we deliberately excluded in our motif 
selection.

Next, looking at FBP, the depletion coefficient is very small or insig-
nificant. This clearly indicates that the metabolite of interest has reached 
a saturated value, perhaps due to downstream rate-limiting mechanism. 
This observation is strengthened by the lower than expected yield of 
downstream metabolites like glycerol and glyceraldehyde-3-phosphate 
(G3P) in (17).

To test our hypothesis, we localized the FBP network, as represented 
in Figure 7A, and performed a mass action kinetics analysis using 
pulse perturbation around this network. Our aim is to determine the 
various k values in the model, by making a close fit to the experimental 
data, and then comparing them to infer the presence or absence of any 
rate-limiting phenomenon that we suspect. We noticed that the value of 
k2 is much larger than that of k4 and k5 (k2 = 0.05, k4 = 0.0004, k5 = 0.0002)
(Figure 7B), thus indicating a bottleneck scenario for FBP (Figure A2.2, 
Appendix 2). This positively implies that downstream of FBP, the enzyme 
aldolase activity may have reached a saturation point, thereby becoming 
the rate-limiting enzyme for glucose pulse experiments. If this result is 
proven to be true with subsequent wet experiments, there will be the 
hope to use NICM and yeast for industrial benefit, such as increased 
production of ethanol for beer brewery, by carefully targeting the enzyme 
aldolase.

4. Conclusion

We have developed a novel quantitative method, the NICM, for the 
dynamic analysis of biological pathways and networks, without the need 
to form differential equations. Starting with only the time-series profile
of reactants in a system, the decomposition of each reactant into forma-
tion, depletion term waves or a combination of both, help us to connect 
a set of reactants into the frequently observed network motifs. When 
applied on published experimental work on yeast dynamics, we predict
that yeast glycolysis under glucose pulse may constitute a novel rate-
limiting step, aft of FBP. Furthermore, in a recent paper, the application 
of pulse perturbation on mass action kinetics on Toll-like receptor signal-
ing in macrophages, predicts that the MyD88-independent pathway con-
sists of novel intermediates (31). This strongly indicates that NICM is not 
just restricted to metabolic pathway analysis but also can be used to 
model signaling networks, as we demonstrate that NICM successfully
identifies network motifs developed using mass action kinetics with pulse 
perturbation.
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Figure 7. (A) Simplified schematic of the reactions surrounding FBP. We lumped 
the reactions of dihydroxyacetone phosphate and glycerol. (B) Simulations of 
F6P, FBP, and glycerol using pulse perturbation (α = 3) on mass action kinetics 
with k1 = 0.64, k2 = 0.05, k3 = 0.002, k4 = 0.0004, and k5 = 0.0002. Solid line repre-
sents solution of mass action kinetics, and dots represent experimental results 
adapted from (17). The x axis represents time (s) and the y axis represents the 
concentration (mM) of metabolites. Although the steady-state level for FBP is 
accurately simulated, the initial transient data (up to approximately 50) does not 
match. We believe this poor transient prediction could be caused by missing links 
(interactions) in our present understanding of FBP connectivity, as in (A).
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Appendix 1

Genetic Algorithm (GA)

The GA works by encoding each coefficient in a given NICMmathematical
expression into a binary string. The algorithm evolves parameter sets by 
the operations of selection, crossover, and mutations into the strings 
from one generation to the next (26,27). A variable P, such as a, p1, p2

in NICM expressions, e.g., equations (15–17), adopts a simple form, Pin(1
+ Pmax · R/(216–1)), where Pin is the initial value of P, Pmax is the maximum 
change of the parameter over the entire generation of interest, and R is
initially set to be 0; then a binary string corresponding to R is evolved 
within the range 0 ≤ R ≤ 216–1 by the GA operations. In the GA, we 
assign strings for 24 individuals for the variables in the NICM, which are 
used to search for the minimum fitness value.

Fitness Value

Fitness, f, or error, for each set of motif is based upon least square fit
(28). It is defined as the sum of the absolute difference of mass action 
kinetic solution, represented as X in equation (A1), and NICM mathe-
matical expression, Y, divided by mass action kinetics solution, at all 
discretized time points (j); the fitness of each reactant is then summed 
in a motif.

f
X Y

X
j
i

j
i

j
i

j

m

i

n

=
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where i and j represent each reactant and time point, respectively. In all 
of our cases (Figures 2–6), n = 3 or 4, depending on the kind of motif, 
and m = 200.

Tolerance

We set the tolerance for accepting a network motif if the fitness value, f,
is less than or equal to 0.01 or 10% because choosing the incorrect motif 
usually yields error more than 25% (Figure 2).

Computational Implementation

The current form of NICM software application is performed using 
Mathematica Version 5.1, which runs on Intel Pentium 4 (3 GHz) and 
1 GB of RAM.

Appendix 2
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Figure A2.1. Schematic of glycolytic pathway in S. cerevisiae. Adapted from 
Theobald et al., 1997.
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Figure A2.2. (A) The changes in the levels of G6P, F6P (a), FBP (b), phospho-
enolpyruvate (c), and GAP/3-phosphoglycerate (d) from steady-state conditions 
after a glucose pulse perturbation. (B) The changes in the levels of glycerol from 
steady-state conditions after a glucose-pulse perturbation. We represent GAP 
as G3P throughout the text. Adapted from Theobald et al., 1997.

CIT_Ch23.indd 469CIT_Ch23.indd   469 5/22/2007 3:56:41 PM5/22/2007   3:56:41 PM



470 Selvarajoo and Tsuchiya

0

1

2

3

4

5

0 30 60 90 120 150

Time (s)

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
M

)
G6P (sim)
G6P (exp)
F6P (sim)
F6P (exp)

A

0

1

2

3

4

0 30 60 90 120 150

Time (s)

C
o

n
c
e
n

tr
a
ti

o
n

 (
m

M
)

FBP (sim)
FBP (exp)
3PG (sim)
3PG (exp)

B

90.0)1(80.46 016.0230.0 +−= −− tt eePG

17.0)1(01.26 037.0130.0 +−= −− tt eePF

11.0)1(68.2 0003.0258.0 +−= −− tt eeFBP

33.0])1[(97.03 114.0034.0 ++−= −− tt eePG

Figure A2.3. Using NICM expressions and GA, we fit the dynamic concentra-
tion profiles of (A) G6P, F6P, (B) FBP, 3PG, (C) G3P, phosphoenolpyruvate, and 
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Storing, Searching, and Disseminating 
Experimental Proteomics Data
Norman W. Paton, Andrew R. Jones, Chris Garwood, 
Kevin Garwood, and Stephen Oliver

Summary

The chapter introduces the challenges of storing, sharing, and querying 
proteomics data caused by the complexity of the experimental tech-
niques, and the speed with which the techniques evolve. Public proteome 
databases are difficult to develop and populate because of the range of 
data types and queries that must be supported, and the quantity of meta-
data required to validate results. There are several data standards under 
development that should alleviate some of the challenges, and databases 
that utilize the standards are becoming more widely supported. The 
chapter describes a model of a complete proteomics pipeline, including 
the metadata that should be captured to allow confidence to be placed 
on the results. Software is also required, which can produce data con-
forming to the standards and that can be used to query proteomics data 
repositories. The chapter outlines the requirements for software and 
presents two exemplars developed at the University of Manchester. 
Finally, there is a description of the likely future developments in stan-
dardization for proteomics.

Key Words: Proteomics; mass spectrometry; data standard; database; 
PEDRo; Proteomics Standards Initiative.

1. Introduction

Experimental proteomics involves the identification and, in some cases, 
quantification of as many proteins as possible in a biological sample (1). 
Proteomics is rapidly evolving into a high-throughput technology, in 
which substantial and systematic studies are conducted on samples from 
a wide range of physiological, developmental, or pathological conditions. 
As a result, effective archiving and sharing of proteomic data is becoming 
increasingly important to enable comparison, validation, and further 
analysis of experimental results.

Figure 1 illustrates the steps in a typical proteomics experimental 
pipeline. Although the results of a proteomics experiment can be 
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summarized as an association between a description of a sample and the 
list of identifications made, many applications of a proteomics data 
repository require access to information on all aspects of the pipeline.

Establishing the most appropriate kinds of data to capture about a 
proteomics experiment is not straightforward, as this depends on the use 
that is to be made of the data. In a data repository, users may want to 
search for results based on widely varying criteria; for example, the pro-
teins identified, the change in the level of a protein over time, the method 
by which a sample was extracted, etc. Furthermore, the users of a pro-
teome data repository may, themselves, be diverse, including experimen-
talists with minimal direct experience of proteomics, but who are 
interested in proteins or organisms for which proteome studies have 
been conducted; proteome scientists who want to identify how successful 
specific techniques have been in different contexts; or mass-spectromet-
ric analysts who want to compare their results with others.

A further challenge lies in the variety of proteomic technologies and 
practices. For example, samples may be subject to a wide range of pre-
fractionation techniques (2), which affect the proteins that are found in 
a sample. Such techniques may be applied, for example, because low-
abundance proteins are only likely to be detected using two-dimensional 
gel electrophoresis if steps are taken to remove highly abundant proteins 
before separation. As a result, the presence or absence of proteins in the 
result of an experiment is affected by the details of sample processing, 
and thus scrutiny of a result; for example, to understand whether or not 
a specific protein might have been expected to have been detected 
requires details on how the sample was processed throughout the experi-
mental pipeline. The large number of different techniques for sample 
extraction, preparation, and separation, combined with the complexity 
of mass spectrometric techniques, and the subtleties of the software used 
to make identifications, means that capturing the data from a proteomics 
pipeline in a systematic manner is a challenging business.

The need for consistent and effective descriptions of proteomics 
experiments is reflected both in the presence of a standards body for 

Protein
mixture

Proteins

MS analysis

Database search

MS dataPeptides

Identification

Peptide
mixture

digestion digestion

separation

separation

Figure 1. A typical proteomics experimental process.
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proteomics: the Proteomics Standards Initiative (PSI; http://psidev.
sourceforge.net/) of the Human Proteome Organisation, and of formal 
guidelines from journals for the description of proteomics experiments 
(3). Although the resulting standards and guidelines have yet to reach 
maturity, in the sense that they have become comprehensive in their 
coverage or universal in their adoption, their very presence suggests that 
what constitutes best practice for the storage, searching, and dissemina-
tion of proteomics experimental data is likely to become more widely 
agreed upon in the near future than it has been in the recent past.

The remainder of this chapter is structured as follows. Section 2 
summarizes the major contributions in the field that have taken place 
over the last few years. Section 3 describes a model of the main compo-
nents of a proteomics experiment. Section 4 focuses on the capture 
and dissemination of proteomics data, using two software applications 
as exemplars. Conclusions and future perspectives are provided in 
Section 5.

2. Previous Work

There are many different tasks that a proteomics data repository might 
be expected to support. These include: (i) search, e.g., to identify the 
experiments that found particular proteins, or to find the quantitative 
experiments that have been carried out for a designated species; (ii) 
browse, e.g., to view the gels that have been produced for an organism, 
or to compare a reference gel with one obtained in a specific experiment; 
(iii) validation, e.g., to assess the identifications claimed in an experiment, 
or to establish the confidence that should be put on the identifications
made; and (iv) analysis, e.g., to repeat the running of identifications using 
different software or an updated database.

The earliest proteome databases mostly supported tasks (i) and (ii). 
For example, the SWISS-2DPAGE database was established by the Swiss 
Institute of Bioinformatics in 1993 to store images of two-dimensional 
gel electrophoresis (4). The database provides a Web interface that allows 
searching of proteins that have been identified on a gel, or browsing of 
gels by species or tissue type of the sample studied. Historically, SWISS-
2DPAGE has not stored sufficient information about the methods used 
to identify a protein from a gel, such as the mass spectrometry data that 
was searched against a sequence database, to allow the verification of 
each result. A relatively recent development is the inclusion of an option 
that allows partial recording of such data (for example, giving the peak 
list produced by mass spectrometry), which could in theory allow an 
identification to be verified if the peak list had been searched using a 
standard set of database parameters. However, there is significant varia-
tion in the methods of mass spectrometry and database searches, such 
that storage only of a peak list is not sufficient to establish confidence in 
a protein identification.

More recently, databases have been produced that also support tasks 
(iii) and (iv); by focusing on the storage of the peak lists produced by 
mass spectrometry, the proteins identified from the peak lists, and the 
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details of the methods used. The resulting databases, such as PRIDE (5) 
and GPM (6), have grown rapidly to include many protein identifications,
as most of the data required can be captured automatically from mass 
spectrometry and proteomics software.

GPM contains data imported in the mzXML format defined by the 
Institute of Systems Biology (7). The mzXML format captures raw mass 
spectrometry data (the peak list) and metadata (such as machine param-
eters). A set of supporting tools is freely available that converts the 
output format from various types of instruments to mzXML. The format 
can also be used as input to a number of search applications that identify 
proteins from sequence databases. As such, mzXML allows data pro-
duced in one laboratory to be validated or re-analyzed by researchers 
who do not have access to the (often proprietary) software that produced 
the raw data or performed the initial database search. PRIDE, hosted at 
the European Bioinformatics Institute (www.ebi.ac.uk), imports data in 
the mzData format, developed by PSI. The mzData format has similar 
coverage to mzXML, and converters exist to transfer data between 
mzXML and mzData, such that either could be viewed as a viable stan-
dard for mass spectrometry data.

These databases contain rather few details on upstream sample pro-
cessing, and thus support only certain forms of validation. For example, 
they allow validation that a protein has been correctly identified within 
a sample (checking for false positives). However, without sufficient infor-
mation about the sample processing it is not possible to get an indication 
of false negatives; that is, the proteins that have not been identified
because they were “lost” during separation. There are databases that 
model the complete proteomics investigation, such as PEDRoDB (8), 
but they are typically much more expensive to populate, in terms of time 
and effort, and are supported less directly by the early PSI standards.

As such, proteome data management should be seen as being in transi-
tion; some substantial resources now exist, but have yet to be fully sup-
ported by standards, and journal publication of proteomic experiments 
does not always require deposition of results in repositories. However, 
data standards and repositories are growing in importance, and can be 
expected to be a prominent part of the proteomics research landscape 
in the near future.

3. Modeling Proteomics Data

The PEDRo (Proteomics Experimental Data Repository) model was 
developed at the University of Manchester in 2003. PEDRo was intended 
to instigate community discussion about the requirements for a standard 
data format that would allow all four tasks described in section 2 to be 
supported. To achieve this goal, significant detail about the experimental 
procedures employed that produced the results must be captured. The 
proteins detected in a sample are influenced by the techniques used for 
extraction, separation, and identification. Furthermore, small differences 
in the genotype or environmental conditions of an organism can greatly 
affect the proteome detected in the sample.
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The four sections of PEDRo (Figure 2) contain information about: (A) 
the sample being studied, (B) the protein separation technique employed, 
(C) the experimental procedure used to perform mass spectrometry, and 
(D) mass spectrometry data and analysis performed over the data.

Section A of the model allows the user to specify the hypothesis of the 
experiment and give a citation for the methodology employed in the 
experiment. The model also captures the sample on which proteomics 
was performed, allowing the user to enter the species of origin and the 
tissue, strain or cell type (if applicable). Such information is usually 
stored in a database to allow queries to find datasets of interest. The 
model does not contain a highly detailed structure for capturing all the 
potential variations in samples that could exist. It is a difficult challenge 
to develop a model for biological samples because there is so much 
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Figure 2. The PEDRo model of proteome data (9).
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variation in the types of information that are relevant in a given context. 
For instance, the important information could be the description of a 
sample of river water or the case history of an individual with heart 
disease. The future development of proteome formats is likely to focus 
on defining relatively simple models of biological samples. The detail 
about the sample will be captured using definitions of samples obtained 
from controlled vocabularies (ontologies) that can grow over time. 
Experts in the biology of a particular organism or tissue type can develop 
the controlled vocabularies, whereas experts in proteomics will develop 
the underlying model.

Section B describes various techniques that could be employed to 
separate proteins. The model includes techniques, such as one- and two-
dimensional gels, and column separations, such as liquid chromatogra-
phy. The model captures a significant number of parameters, which is 
important because the parameter values may affect the set of proteins 
detected. One example is the pH range of a 2D gel. In one of the gel’s 
dimensions, proteins are separated according to their net charge within 
a pH gradient, such as pH 4–7, until they reach their isoelectric point 
(pI), which is when they cease to migrate. Only soluble proteins with pI 
values in this range will be detected, leaving those proteins with pI values 
outside the chosen range undetected.

The model also describes the outputs of the separations, such as spots 
detected on a gel or fractions collected from a column. The spots or frac-
tions can be used as input to the next part of the model, the mass spec-
trometry procedure.

Various methods of mass spectrometry are described in Section C of 
Figure 2. The model captures the method of ionization and of detection. 
Each of these processes has a significant number of parameters used with 
a particular type of instrument. The parameters will rarely be used for 
querying a database, but it is important that they are captured to allow 
confidence to be placed in the final results, or to allow a particular 
method to be repeated.

Section D captures the data produced from mass spectrometry (Peak
and Peaklist) and searches performed with the data to identify pro-
teins (DBSearch and DBSearchParameters). This part of the model 
contains many components that are vital for placing confidence in the 
results. It has previously been demonstrated that the set of proteins 
identified by mass spectrometry is affected by the algorithm used, the 
search parameters, and the quality of the sequence database searched 
(10). This level of detail must be stored because, if a protein has been 
identified in a sample, it is vital that the confidence of an identification
be established, which can depend on various criteria specific to the 
software used for the search. Furthermore, the data produced by mass 
spectrometry can be searched with a new algorithm, or against a new 
version of the sequence database, to validate a particularly important 
result or to find additional proteins that were not identified in the initial 
search.

PEDRo has been used as a starting point from which a set of smaller 
modular formats has been developed, managed by PSI. The mzData 
format (http://psidev.sourceforge.net/ms/#mzdata) captures the machine 
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parameters and data produced by mass spectrometry, similar in scope to 
mzXML. A format is also under development that handles the identifica-
tion (and quantification) of protein data by database searches with mass 
spectrometry data. PSI will also manage formats describing gel electro-
phoresis, liquid chromatography, and other protein separation techniques. 
In essence, these formats contain large amounts of metadata describing 
the techniques used to extract and separate proteins from complex mix-
tures before identification by mass spectrometry. The actual data is the 
peak list produced by mass spectrometry and the proteins identified by 
a database search. Such a large quantity of metadata is also required to 
place these data within the context of a complete proteomics pipeline, 
to assess the confidence that can be put on a result, and to determine the 
validity of performing comparisons of data produced using different 
techniques.

4. Capturing and Disseminating

In this section, we describe two software applications called Pedro and 
Pierre, developed at the University of Manchester, which can perform 
capture and dissemination of proteomics data.

Pedro is a software application that presents a graphical interface 
enabling a user to enter the metadata and data for their domain of inter-
est (11). One of the challenges with developing software for proteomics 
is the speed with which the experimental techniques evolve. It is difficult
to design software that can accommodate changes without significant
effort on the part of software developers following each new technique 
that must be described. Pedro’s approach is to generate data-entry forms 
based on a model that is independent of the software. Pedro is not con-
cerned with the nature of the model, only that it is represented in a 
standard framework (an XML Schema, http://www.w3.org/XML/Schema; 
both the Pedro model and the PSI models have representations in XML 
Schema). As such, any model can be loaded into Pedro for the purpose 
of generating data-entry forms. To support proteomics, Pedro has been 
developed in parallel with the PEDRo model described in section 3 but, 
importantly, there is no reliance, within Pedro, on any of the concepts in 
the PEDRo model. In practice, this means that if a novel kind of data is 
added to PEDRo, the new data type will be rendered in the Pedro inter-
face without requiring any change to the software. This generic approach 
to form generation has allowed Pedro to be used directly in many other 
fields, including medical patient records, grid service descriptions, and 
genealogy (example models can be found at http://pedrodownload.man.
ac.uk/models.html).

Pedro considers three types of users or clients: developers, data model-
ers, and end users. A developer is considered someone who develops 
software that is plugged into the Pedro system at one of several extensi-
bility points, for example, to import data from a proprietary file format. 
A data modeler is responsible for creating the XML Schema, such as the 
PEDRo model, which will be used for the generation of data-entry forms. 
The data modeler need not be an expert in the domain that is being 
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modeled, but he would be expected to work in collaboration with such 
an expert. An end user is someone who uses the generated forms, as 
illustrated for the PEDRo model in Figure 3, for data entry. The end user 
is not expected to have any in-depth knowledge of computers or pro-
gramming. In proteomics, the end user is a scientist, using the software 
to capture her data.

Among Pedro’s features is the ability to import terms from externally 
controlled vocabularies (ontologies). For example, if the user needs to 
specify a “species name,” a call is made to a relevant ontology resource, 
such as the NCBI taxonomy (http://www.ncbi.nlm.nih.gov/Taxonomy/). 
The user is shown a list of possible terms from which he may select 
the correct taxonomic name. This feature ensures that the name is 
entered correctly according to a standard definition, for instance as 
“Homo sapiens” rather than “H. sapiens” or “human.” The use of con-
trolled vocabularies is important because it facilitates the subsequent 
retrieval of data, as the user need only search using the term “Homo
sapiens,” rather than all of the possible synonyms, to find the datasets of 
interest.

Pedro also has facilities for creating templates (Figure 4). These are 
records that have been populated with data that may be used again 
multiple times, thus, saving the user from having to repeatedly re-enter 
the same data. For instance, the template feature is especially useful if 
the same experimental protocols have been employed in multiple set-
tings, thus preventing unnecessary entry of redundant information. Pedro 
allows data modelers to set context-sensitive help pages for end users. 

Figure 3. A screenshot of the Pedro form used for capturing the details of the 
biological sample used in a proteomics experiment.

CIT_Ch24.indd 479CIT_Ch24.indd   479 5/22/2007 3:57:25 PM5/22/2007   3:57:25 PM



480 Paton et al.

These can be activated by the end user and can provide additional infor-
mation about a particular field. For instance, a description could be pro-
vided to explain the type of data that should be entered in a field called 
“environment.”

Pedro allows the proteomics research community to expand the capa-
bilities of the tool by making use of plug-in technology. One such example 
would be importing the peak list produced by a particular type of 
mass spectrometer and converting the format to a standard, such as 
mzData.

The other application developed for the proteomics research commu-
nity is called Pierre. Pierre’s role is to provide users with an interface for 
browsing, searching, and querying data repositories. Like Pedro, the 
Pierre infrastructure allows any data model to be loaded and thus the 
infrastructure automatically accommodates changes as the requirements 
of the technology evolve.

Up to five auto-generated software products can be created when 
Pierre is run. Four of the products are interfaces that allow users to access 
the data repository in different ways. Pierre can create a Web interface 
that allows users to browse or search data from any location, as illus-
trated in Figure 5. Alternatively, a stand-alone application can be down-
loaded and installed locally, which offers more features than the Web 
interface. Pierre creates two other interfaces, intended for users who are 
comfortable with UNIX-style systems or who may not want Web or 
down-loadable application interfaces. The first is a command-line inter-
face, which allows queries to be asked directly of the database, without 
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e.g. PEDRo
Configuration

Information

Configuration

Information

Data entry

results queries

Local or public
database

Data
Access
System
(Pierre)

Data Capture System
(Pedro)

+

+

Figure 4. The user interaction with Pedro to submit data to a repository, and 
with Pierre to access the data.
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having to load a graphical application. The command line feature can 
also be useful for connecting a database with other pieces of software 
by means of piping commands. The text menu interface is similar to the 
command line, except that the user can navigate using a series of menu 
lists. Finally, Pierre can create an application programming interface 
(API) that allows the developers of other applications to embed services 
offered by Pierre within other software or a larger framework.

Pierre allows end users to browse and to conduct three kinds of 
searches. Simple search lets users interrogate a data repository based on 
preset queries. These so-called canned queries provide an easy means of 
querying because they are based on standard questions that have been 
identified by a designer as relevant to the user community. Example 
queries to a proteomics database could include “find all the experiments 
on mice,” “find all the proteins that have been identified on gels,” or “find
the proteins that have been identified at more than one lab.” Advanced 
search enables end users to construct their own queries from fields that 
occur in the schema. Advanced search allows Boolean queries to be 
constructed, such as “find experiments on mice AND find experiments 
where protein name = p53.” Expert search allows users to directly enter 
a query in the query language offered by the underlying data repository. 

Figure 5. An example of a canned query in a Web interface generated by 
Pierre.
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To perform an expert search, the user must have knowledge of the query 
language and the data model.

There are many different methodologies that could be used to develop 
data repositories for proteomics. The Pedro/Pierre software is only one 
example; however, it differs significantly from many others in that the 
software architecture is independent of the model used to represent 
the data. In proteomics, and in the wider context of systems biology, the 
methodologies used to study genes, proteins and metabolites continue to 
evolve at a remarkable rate, with new experimental protocols published 
at frequent intervals (12,13). The approach taken with Pedro/Pierre has 
the advantage that the software can remain stable even if the data model 
continues to evolve. As new data models are produced, new interfaces 
can be provided to the database with minimal software development 
effort.

5. Conclusions and Future Perspectives

This chapter has reviewed various issues relating to the modeling, capture 
and sharing of proteomics experimental data. The overall lesson is that 
the position is evolving rapidly. At the time of writing, there is relatively 
little sharing of proteomics data, but repositories are being actively 
developed at several sites, and standards are emerging that will encour-
age the systematic capturing and sharing of such data. Given all this, 
proteomics data should soon be on a similar footing to other types of 
functional genomics data, where there is widespread sharing and support 
from standards for both microarray and protein interaction data.

Proteome data are intrinsically challenging to handle. Seemingly 
straightforward conclusions, such as that a protein is present in a sample, 
are based on several complex computational analysis steps, some of 
which, in turn, depend on external sequence databases. In addition, 
whether or not a protein is detected may depend on subtle features of 
the way the sample is processed, which may also affect quantitative 
results. All this is compounded by the wide and growing collection of 
techniques for sample processing and mass spectrometric identification.
Furthermore, different users of proteome data may require access to 
very different levels of detail to support rather different tasks. For 
example, the data required to compare the effectiveness of different 
separation techniques are different from those required to compare the 
effectiveness of different identification algorithms. As such, there is still 
further work to be done to understand how best to make use of archives 
of proteome experimental data, and to establish how best to integrate 
such results with those from other high-throughput experimental 
methods.
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Representing and Analyzing 
Biochemical Networks Using BioMaze
Yves Deville, Christian Lemer, and Shoshana Wodak

Summary

Systems biology aims at understanding the holistic behavior of biological 
systems. A very important step toward this goal is to develop a theoreti-
cal framework in which we can embed the detailed knowledge that 
biologists are accumulating at increasing speed, which will then allow us 
to compute the outcomes of the complex interplay between the myriad 
interactions that take place in the system. This chapter deals with impor-
tant basic aspects of this theoretical framework that lie on the divide 
between systems biology and bioinformatics. In the first part, it discusses 
the conceptual models used for representing detailed knowledge on 
various types of biochemical pathways and interactions. As much of this 
knowledge deals with the complex networks of functional and physical 
interactions between the different molecular players, the second part of 
this chapter reviews the conceptual models and methods used to analyze 
various properties of these networks.

Key Words: Biochemical networks; network analysis; metabolic path-
ways; signal transduction; artificial intelligence; BioMaze.

1. General Introduction

The major challenge of the post-genomic era is the interpretation of the 
vast body of genomic sequence information in terms of the biological 
function of the gene products and the mechanisms of the cellular pro-
cesses in which they are involved. This endeavor is driven in great part 
by the expectation that the gained understanding will lead to new ways 
of diagnosing and curing human diseases, and making our planet a better 
place to live.

But the task is daunting. The very notion of biological function 
is complex. The function of proteins, which are one type of gene product, 
essentially depends on the molecular interactions they make and on 
the cellular context in which they find themselves. Understanding func-
tion, thus, requires knowledge of how the different molecular players 
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cooperate to produce the observed behavior of the living cell and of key 
processes therein. Acquiring this knowledge is the main object of systems 
biology, a field that has attracted renewed interest in recent years, and 
to which this volume is devoted.

A first key step in this endeavor is to acquire the information necessary 
to describe the system under study in a useful way. Major efforts are 
therefore being devoted worldwide to collecting such information by 
diverse means. Experimental procedures are used to measure gene 
expression profiles (1), transcription factor–gene interactions (2), and 
mRNA lifetimes (3) on the genome scale. Protein–protein interactions 
are characterized using high-throughput pull-downs or two-hybrid 
screens (4), and indirect “interactions” between genes are being probed 
by multiple gene deletions (5). In parallel, protein–protein interactions, 
sets of co-regulated genes (6,7), and metabolic pathways (8,9,10) are 
inferred using theoretical methods. These methods exploit information 
on protein and DNA sequences in related genomes, on protein three-
dimensional (3D) structures, domain architecture, and gene order (11). 
Others use automatic procedures to extract links from texts of Medline 
abstracts (12).

All of these approaches yield very large bodies of valuable, but rather 
noisy, data, which systems biology research endeavors to exploit. Clearly, 
the bulk of the data pertains to the description of the circuitry of the 
cellular systems; the interaction, regulatory networks, and pathways (on 
gene regulation, metabolism and signal transduction), and provides 
limited information on the temporal sequence of events, or on their 
spatial organization. But obtaining detailed information on the circuitry 
is a key first step that can yield valuable clues on the system-level behav-
ior (13), provided, however, that this information can be adequately 
validated and readily analyzed.

Currently, such analyses face various difficulties. The ability of access-
ing and manipulating the information is limited by the fact that it is dis-
tributed across heterogeneous databases. Also, our current knowledge of 
the various cellular processes (protein interaction, gene regulation, or 
signal transduction) is poorly structured and partial. The data can there-
fore be incomplete, inconsistent, or approximate. In addition, the size of 
the pathways and networks available for analysis can be very large, 
leading to problems of spatial and temporal computational complexity. 
All this makes the representation and analysis of pathways and interac-
tion networks, which we denote here as biochemical networks, challeng-
ing problems in systems biology and bioinformatics.

This chapter describes strategies for addressing these challenges, with 
examples taken from our own work on the BioMaze system. Section 2 
discusses data models for representing rich information on biochemical 
networks for archival and query purposes. That section starts with a short 
overview of existing models and proceeds with a description of an attrac-
tive integrative data model implemented in the BioMaze database. 
Section 3 deals with data models used for the purpose of performing 
computational analyses of biochemical networks. Section 4 reviews 
analysis methods that use standard graph-based techniques and presents 
some recent advances in the application of constraint satisfaction 
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methods. A brief description of the BioMaze database system featuring 
the described data model and analysis methods is presented in 
Section 5.

2. Data Models for Representing Biochemical Networks

2.1. Overview of Existing Models

Building the theoretical frameworks for investigating the rapidly growing 
body of biological data and subjecting it to the corresponding systematic 
analyses requires that the data be appropriately structured and orga-
nized. Furthermore, the heterogeneity of the terms used by biologists 
must be reduced through the creation of controlled vocabularies, and 
standards must be developed to formalize the description of both experi-
mental data and mathematical models of cellular and physiological 
processes.

Much of this has been happening in recent years. The development of 
specialized databases for representing information on cellular processes 
and interactions (14), has required the design of a new generation of data 
models that are much more complex than those previously used in data-
bases representing information on gene/genome and protein sequences 
(15). Pioneering database projects such as EcoCyc (9,16), KEGG/Ligand 
(17), and WIT (18) initially focused on metabolic pathways, developing 
data models specifically tailored to this types of processes. With the excep-
tion of EcoCyc, which featured a rather sophisticated hierarchical data 
organization early on, the other data models were initially quite rudimen-
tary, often representing pathways as collections of molecular functions, or 
unordered collections of catalyzed reactions, with the order of the reac-
tions provided by the graphical representations (maps). However, these 
databases have now elaborated and extended their models to allow the 
representation of other processes, such as gene regulation, transport and 
signal transduction. In some databases, such as KEGG/Ligand, informa-
tion on pathways from different organisms is integrated in the same data 
structure, whereas in others, such as EcoCyc and its sister databases, each 
organism has its processes represented in a separate database. Elaborate 
data structures capable of accommodating different types of processes are 
featured in more recent database efforts, such as the Reactome database, 
which focuses on human pathways (19), and Patika, which handles meta-
bolic and signal transduction pathways of different organisms (20).

The data models underlying all these databases have many common 
features, which reflect a consensus view reached in the field. But they 
remain different enough to preclude easy integration. This has prompted 
the development of a community-wide standard for pathway data 
exchange, BioPax (21), which goes far beyond what XML (Extensible 
Markup Language) has to offer, as XML is a simple, flexible text format 
derived from SGML (ISO 8879), originally designed to meet the chal-
lenges of large-scale electronic publishing.

Another category of databases includes those specializing entirely on 
representing processes other than metabolism. These include databases, 
such as DIP (22), BIND (23), MINT (24), and IntAct (25), whose primary 
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focus is the representation of data on protein–protein interactions. Their 
data models are usually much simpler than those of the pathway data-
bases. They are limited to representing pairwise interaction events with 
their associated annotations, often varying widely in scope and coverage. 
But they differ sufficiently from one another to have prompted the 
development of a community-wide standard (PSI) for the data exchange 
format (26).

Two other types of databases with distinct data structures are those 
specializing in gene regulation and in signal transduction pathways. Gene 
regulation databases, such as TRANSFAC (27) or Regulon DB (28), 
represent information on transcription factor–gene association, on 
the transcription factor–binding sequences, associated sequence motifs, 
and relevant annotations. Only a few databases, mostly those already 
specializing in metabolic pathways, feature data models representing 
the regulatory networks that can be constructed by linking together 
different transcription factor–gene and transcription factor–protein 
interactions.

By far, the most complex data models are those for representing signal 
transduction pathways. Many aspects of these models are hierarchic. A 
good example is in TRANSPATH (29), where the data model combines 
hierarchies at the molecular, reaction, and pathway levels to yield the 
required description of the corresponding pathways. A molecular hier-
archy is used to represent higher level information on orthology or 
protein family on the one hand, and lower level details on signaling 
interactions, like the protein chain and particular domain involved in the 
interaction, as well as the corresponding chemical modification (usually 
phosphorylation). Reaction and pathway hierarchies are used to com-
bine the molecular events into pathways at various levels of granularity. 
Other databases, such as CSNDB (30) and INOH (31), feature different 
models.

In parallel, conventions for representing signal transduction networks 
have also been proposed (32). These comprise a set of rules and symbols 
for the visual representation of elementary biochemical processes, such 
as various types of protein–protein association events, enzymatic cataly-
sis, inhibition, and protein modification, to more complex processes, such 
as degradation or gene expression.

Last, one should mention the so-called ontologies, which combine a 
taxonomy of terms with a set of domain-specific rules for linking objects 
within the taxonomy. A number of such ontologies coexist in the field
(33). Among them, the Gene Ontology (34) is widely used. The main 
roles of such ontologies are to help unify annotation efforts, permit the 
integration of data from ontologies and databases in other areas of 
biological research, and to build of software tools that interpret and use 
this information.

2.2. The BioMaze Model: An Integrated Solution

An integrated solution to the problem of representing rich information 
on complex heterogeneous processes is provided by the BioMaze data 
model, which is a recent extension of the original model of the aMAZE 
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database (35). This solution enables us to archive this information, as 
well as to readily extract it for use in a range of specialized biological 
analyses aimed at investigating different properties of these processes.

A major consideration in designing this data model has been that it 
should reflect the biologist’s view of the domain, while enabling efficient
and flexible programmatic access to the data. The choice was therefore 
made to adopt the Extended Entity Relationship modeling paradigm 
(36). This paradigm generalizes the well-established Entity Relationship 
model used in the relational databases through the addition of the inheri-
tance concept taken from the object-oriented world, thereby providing 
the best of both worlds. This made it possible to build a conceptual model 
of the data, which enables the biologist to readily manipulate the in -
formation for query and analysis purposes. Furthermore, using the 
con ceptual model, specialized software tools are able to generate the 
corresponding relational model and implement it in a relational database 
management system, as will be illustrated in section 5.

In the following sections, the main features of the BioMaze model are 
summarized. This model comprises 3 main layers, the biochemical, sys-
temic, and functional layers that map into one another, as illustrated in 
Figure 1.
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Figure 1. Overview of the BioMaze data model outlining its three main layers: 
the Biochemical layer (bottom), the Systemic layer (middle), and the Functional 
layer (top).
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2.3. Biochemical Layer

The biological/biochemical knowledge layer of the BioMAZE model 
(Figure 1, bottom) contains the descriptions of the physical entities that 
are the basic building blocks of biochemical processes. Physical entities 
can be “simple” entities such as compounds (small molecules), polypep-
tides, and genes, or “complex” entities, such as biologically active assem-
blies (complexes) composed of several simple entities. Both simple and 
complex physical entities are unified as PhysicalEntity. Because the func-
tion of a molecule or a molecular assembly depends not only on its basic 
chemical composition but also on its state (conformational state, chemi-
cal modification, etc.), the PhysicalEntity is combined with the State 
description to yield the BioEntity, representing the biological entity actu-
ally involved in the biochemical process.

In addition to the physical building blocks, the BioMaze model also 
describes basic chemical and biological processes as building blocks, 
a feature that was already introduced in several of its precursor 
data models (35). These comprise Reaction, Expression, and Transcrip-
tional Regulation, which are defined in the model as Interaction -
Evidences. Reaction represents chemical reactions (catalyzed or not); 
Expression represents a shortcut for the process whereby a gene “leads” 
to the expression of the proteins it codes for; and Transcriptional Regula-
tions is a shortcut for the process whereby the expression of the gene 
coding for a particular protein is up- or down-regulated (see following 
section).

2.4. Systemic Layer

At the heart of the BioMAZE data model is the Systemic layer 
(Figure 1, middle). It is the feature of the BioMaze model that enables 
it to represent in an integrated fashion very different types of basic 
biochemical processes, such as metabolic reactions, gene regulation, 
and signaling.

In this layer, BioParticipant represents a BioEntity in a specific cellular 
location, with the latter also being described by a cellular location Ontol-
ogy (Figure 1) (37). BioEvent represents simple (elementary) biological 
events and involves interaction between several BioParticipants, which 
can play different roles (BioInput, BioOutput, BioDirector, and Bio-
Effector). To understand this representation, it is useful to illustrate 
how the biochemical layer maps into the systemic layer.

2.4.1. Biochemical Reaction
Figure 2 illustrates this mapping for a biochemical reaction, where Educt 
and Product map into BioInput and BioOutput, the Polypeptide that 
catalyzes the reaction (enzyme) maps into BioDirector, and a compound 
that inhibits the enzyme maps into BioEffector. In addition, a distinction 
is made between BioParticipants that act as reaction intermediates (Bio-
Intermediates) and those acting as pool compounds (BioPool). This dis-
tinction is useful for the layout and analysis of metabolic pathways, which 
represent subgraphs of metabolic networks built by stringing together 
biochemical reactions.
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2.4.2. Protein Expression
The process of expressing a protein coded by a given gene can likewise 
be readily mapped into the systemic layer, as shown in Figure 3. In this 
process, which is a condensed 1-step representation of a complex multi-
step process comprising transcription and protein synthesis, the amino 
acids and the complete polypeptide are the BioEntities that map into 
BioInput and BioOutput, respectively, the gene is the BioDirector, 
whereas the BioEffectors can be protein regulators (transcription factors) 
or small molecules acting as RNA switches. Whenever required, and 
provided sufficient information is available, this condensed representa-
tion can be readily replaced by a detailed description of each individual 
step, without altering the model.

2.4.3. Transport
Transport across membranes and assembly/disassembly of several physi-
cal entities to form a complex can also be readily mapped. The transport 
“reaction” (Figure 4) takes a BioParticipant (representing a BioEntity 
in a given cellular location) as BioInput and another BioParticipant 
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BioDirector

BioEffector BioControl

Figure 2. Biochemical reaction data model in BioMaze.
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Figure 3. Protein expression data model in BioMaze.
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(representing the same BioEntity as in that of the input, but in another 
cellular location) as BioOutput; the transporter (protein) is the BioDi-
rector, and any modulator of the transport process is the BioEffector.

2.4.4. Assembly and Disassembly
Finally, mapping of the assembly/disassembly processes (Figure 5) 
is analogous to that of mapping the biological reaction. Here, the 

Biochemical
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TransportBioOutput
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BioInput

BioEvent

BioDirector

BioEffector BioControl

Figure 4. Transport data model in BioMaze.
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Figure 5. Assembly/disassembly data model in BioMaze.
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Figure 6. Signal transduction event data model in BioMaze.

assembled complex is the BioOutput for the assembly reaction and the 
BioInput for the inverse reaction (disassembly), with various BioPartici-
pants playing the role of catalysts or effectors.

2.4.5. Signaling
Finally, a signal transduction can likewise be mapped into this layer 
(Figure 6). To that end, we define the Signaling BioEvent as the primary 
event (or process) of a signaling cascade. Recalling that a BioParticipant 
is a BioEntity in a specific cellular location, whereas a BioEntity is 
a PhysicalEntity in a certain State (the pertinent states here are the 
various phosphorylation states), we take the signal, as the Director 
of the conversion of a PhysicalEntity in a certain state to the Physical-
Entity in another state (for example, from inactive to active and vice 
versa). The BioInput and BioOutput refer to the same PhysicalEntity, 
but in different states.

Hence, the encoding of the different types of BioEvents discussed 
above follows the same set of rules that relies on the underlying 
biochemistry to define the input, output, and director and effector roles. 
The major difference lies in the interpretation, and, more specifically,
in the navigation through the network. Each type of BioEvent has a 
natural way to be traversed. In BiochemicalReaction, the output of 
one event is the input of the next. The navigation in a metabolic 
pathway thus follows the sequence: BioParticipant–BioInput–BioEvent–
BioOutput–BioParticipant. In SignalTransduction, the output of one 
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event is not the input but the signal of the next event, and the navi -
gation along the pathway follows a different sequence, namely, 
BioParticipant–BioDirector–BioEvent–BioOutput–BioParticipant.

The combination of the systemic and biochemical layers, thus provides 
the framework for a unified representation for a wide range of cellular 
processes. This is achieved through a unified model for the BioEvent, 
allowing the integration of different types of BioEvents in the same 
network and supporting process-specific representations by using appro-
priate navigation rules.

2.5. Functional Layer

The third layer of our model corresponds to the Processes (Figure 1, top). 
A Process is a subgraph of the BioEvent/BioParticipant graph. We use 
an intermediate entity, ProcessStep, to represent each BioEvent in the 
context of the described Process.

Although the data in the BioEntity/BioParticipant graph are tightly 
integrated, in contrast, Processes are less constrained. The model allows 
us to annotate different versions of the same biological pathway and 
stores partially overlapping pathways.

2.6. Ontologies

In addition to the three layers described above, the BioMaze model 
contains a fourth section (Figure 1, left) that groups all the so-called 
ontologies. Those are of two types: i) the external ontologies, which 
include established classifications and controlled vocabularies used by 
the biologists for describing organism taxonomy, organs, tissues, and cel-
lular location, as well as the Enzyme classification (38) and Gene Ontol-
ogy (34), and ii) the internal ontologies, such as the BioEntityType, 
StateType, BioEventType, BioControlType, which are controlled vocabu-
laries that extend the type hierarchy in a flexible manner, allowing us to 
qualify the generic entities (i.e., a BioEvent representing the catalytic 
transformation of a compound into another will be qualified as Catalytic-
Reaction, a BioEvent representing the biosynthesis of a polypeptide 
under the “direction” of a gene will be qualified as Expression, etc.).

3. Data Models for Analyzing Biochemical Networks

Most (nontrivial) analyses of biochemical networks cannot be performed 
through routine database queries. Usually, the network under study is 
extracted from the database, represented in a suitable data model, and 
processed by a specialized analysis tool.

Various types of data models can be used for the analysis of biochemi-
cal networks. These data models have been reviewed and classified by 
Deville et al. (39) using a unified framework. A summary of this review 
is proposed in this section.

It is impossible to determine which model is the best; each model 
presented in the following subsections has its own advantages and 
enables specific types of analysis. Models differ either by the chosen view, 
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the coverage (different types of interactions that they can represent), 
their precision, or their granularity (resolution of the basic information: 
atomic, molecular, or supramolecular).

The models will be described using a graph framework. A graph 
G(V,E) is a mathematical object, where V is the set of nodes (vertices) 
and E is the set of edges connecting pairs of nodes. An edge is an ordered 
pair of nodes (directed or oriented graph) or an unordered pair of 
nodes (undirected graph). Object-oriented models can be seen as a 
natural extension of graphs, where the nodes are typed, and different 
relations are defined between specific types of nodes. Objects also allow 
inheritance.

3.1. Compound and Reaction Graphs
The objective of employing compound or reaction graphs is to model a 
set of chemical reactions. In a compound graph, nodes are the chemical 
compounds. A directed edge connects compound A to compound B if A 
occurs as a substrate and B as a product in the same reaction.

A reaction graph is a dual form of the compound graph. Here, the 
nodes are the reactions. There is an edge between reactions R1 and R2 
if a compound is both a product of R1 and a substrate of reaction R2. 
The graph can be directed or undirected, depending on whether the 
reactions are considered as reversible or not. It is also possible to extend 
the definition of an edge by considering edges between two reactions 
when they share a compound (40).

As an example, let us consider the following simple reaction:

Reaction 1:

glutamate + ATP → gamma-glutamyl phosphate + ADP
EC 2.7.2.11, catalyzed by gamma-glutamyl kinase

The compound and reaction graphs of reaction 1 are shown in Figure 7. 
The reaction graph is reduced to a single node, as it involves only one 
reaction.

The use of graph theory, and in particular compound graphs, is a well-
established representation technique in biochemistry and chemical engi-
neering (41). Compound and reaction graphs have recently been used in 
the analysis of topological properties (connectivity, length, statistical 
properties, etc.) (42,40). The authors stress the small-world character of 
metabolic networks; their compound graphs are sparse, but much more 
highly clustered than an equally sparse random graph.

The equivalent of compound graphs can be defined for signal trans-
duction networks, as well as for transcriptional regulation networks. In 
a transcriptional regulation graph, nodes represent genes, and a directed 
arc between gene A and gene B means that gene A codes for a transcrip-
tion factor, which regulates gene B.

In the signal transduction graph (43), nodes are usually signaling 
molecules, and an edge represents a process relating two signaling mole-
cules. Such a representation is used for path searching.

Although compound and reaction graphs or their equivalent can 
be used to represent and analyze metabolic, regulatory, or signaling 
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pathways, this data model cannot combine these different pathways. A 
combination of compound graphs requires, for example, a distinction to 
be made between nodes representing compounds and nodes represent-
ing genes, and to distinguish arcs representing a reaction from arcs rep-
resenting the regulation of some signaling process. Compound and 
reaction graphs also have obvious limitations in their coverage because 
they represent only reactions within pathways and contain no informa-
tion about the enzymes catalyzing these reactions.

The coverage is even more limited for regulatory and signaling path-
ways because of the large number of different types of interactions that 
occur in these pathways (assembly, transcriptional regulation, protein–
protein interaction, translocation). The descriptive power of compound 
and reaction graph is also very poor because the structure of the reaction 
is lost in compound graphs. In a compound graph, one can no longer 
distinguish if two substrates or two products are involved in the same 
reaction. In a reaction graph, it is impossible to determine if products 
produced by two reactions and consumed as substrates by another reac-
tion are identical or not. As a consequence, different sets of reactions 
can lead to the same compound or reaction graph (39,44).

Nonetheless, although compound and reaction graphs only offer a 
partial and sometimes ambiguous view of biochemical networks, such 

Figure 7. Reaction 1: glutamate + ATP → gamma-glutamyl phosphate + ADP
(EC 2.7.2.11, catalyzed by gamma-glutamyl kinase)
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representations turn out to be sufficient and useful for some simple 
analyses such as topological and statistical properties, or the discovery 
of basic patterns. Such representations can also be helpful in some spe-
cific applications, such as the detection of functionally related enzyme 
clusters (45).

The models described in the next sections extend the above basic 
graph approaches, and overcome some of their limitations.

3.2. Bipartite Graphs and General Graphs

In a bipartite graph, there are two classes of nodes, and no edges can 
relate nodes from the same set. In the context of biochemical networks, 
there are compound nodes and reaction nodes; an edge, thus, necessarily 
relates a compound node and a reaction node. Edges can be undirected 
or directed. A directed edge from a compound node to a reaction node 
denotes a substrate, whereas an edge from a reaction node to a com-
pound node denotes a product of the reaction. Bipartite graphs can 
represent reactions without any ambiguity. The bipartite graph repre-
sentation of our example is provided in Figure 7.

The bipartite graph is a classic data model for the analysis of metabolic 
pathways. For instance, they have been used by Jeong (46), where meta-
bolic networks of 43 organisms are modeled as bipartite graphs, enabling 
a systematic comparative analysis that showed that these metabolic net-
works have the same topological scaling properties.

Bipartite graphs offer an unambiguous representation of the reactions 
and compounds in biochemical networks. Their coverage is limited 
however, as possible controls of reactions (catalysis, inhibition) cannot 
be explicitly represented. This simple data model is appropriate when 
the analysis is limited to reactions and compounds. This includes applica-
tions, such as the analysis of the topological properties of the network, 
path finding, and building pathways from collections of reactions. Clearly, 
however, without extensions, bipartite graphs cannot simultaneously 
model metabolic, regulatory, and signaling pathways.

Bipartite graphs can be generalized to graphs with multiple classes of 
nodes (and arcs). Instead of considering types for the nodes and the arcs, 
it is usually easier to attach a set of properties to nodes and arcs, one of 
these properties being considered as type information if needed. This 
allows the incorporation of additional information that is needed for 
analyzing the graph. Graphs with nodes and arc attributes are especially 
suitable for a graph representation of data extracted from an object-
oriented model, such as in BioMAZE. Such a graph representation of 
Reaction 1 is provided in Figure 7; the type information is visualized here 
through the color of the nodes, and an attribute (substrate/product) is 
attached to some arcs. The control of the reaction can also be integrated 
into the graph.

In the BioMAZE framework, it is possible to extract, from the data-
base, a graph (with attributes) of a specific subset of processes. This is 
achieved using a query language similar to SQL. Various analysis tools 
can then process the resulting graphs.
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4. Analysis of Biochemical Networks

This section describes different methods that can be used for the analysis 
of biochemical network. It starts with an overview of standard graph 
techniques and proceeds to show that some advanced artificial intelli-
gence techniques can provide more elaborated analysis capabilities. 
The described techniques are illustrated through specific examples. 
These techniques have been integrated into the BioMAZE workbench 
Figure 8.

4.1. Standard Graph Techniques

A first type of standard analysis involves deriving classic statistical 
properties of the graph, such as minimum, maximum, average, and stan-
dard deviation on different characteristics of the network: nodes, arcs, 
degree of nodes, connected components. These properties, together with 
other global properties, such as the clustering coefficient or eccentricity 
and closeness of nodes, can be used for the analysis of topological prop-
erties (connectivity and length) (40,42,47,48). Other techniques used for 
network analysis, such as graph decomposition and clustering, which 
were developed in the Pajek program (49), can also be applied on bio-
chemical networks.

The computation of the shortest paths between pairs of nodes in the 
context of the global network is another common operation. For instance, 

Figure 8. Screen shot of the BioMaze workbench, featuring a metabolic pathway 
diagram (right).
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the functional distance between two genes or proteins can be estimated 
by computing the length of the shortest path between the corresponding 
nodes in the network graph. Analysis of the shortest paths in the graph 
of all biodegradation processes in microbes recently suggested that these 
processes have evolved through gradual adaptation of enzymes involved 
in essential metabolism (50). For biochemical networks, such as those 
representing metabolic reactions, care must be taken that the computed 
paths are biochemically meaningful. When dealing with metabolic 
networks, the path-finding problem is usually expressed as the search for 
a path between a pair of start and end nodes, both usually compounds. 
In doing so, however, care must be taken to avoid meaningless paths 
through ubiquitous compounds, such as H2O or ADP, which play the role 
of pool metabolites in many metabolic reactions. A recent study has 
shown (10) that this can be achieved with a simple weighting approach. 
Each compound is assigned a weight equal to the number of reactions 
in which it participates in the full network. Path finding is then performed 
in this graph by searching for one or more paths with lowest weight, 
effectively disfavoring passage through the highly connected pool metab-
olites. This search is known as the k-shortest paths problem. It is, however, 
necessary to restrict the search to paths that satisfy some constraints. For 
instance, a pathway cannot contain a reaction and its reverse reaction. 
It can also be useful to apply other constraints on the paths, such as: 
the path must be simple (path without loop), some nodes are mandatory, 
and the resulting paths are disjoint, constraints on the minimal/maximal 
length, etc.

Two approaches can be followed to solve the problem of k-shortest 
path with constraints. First, classic k-shortest path algorithms, such as 
backtracking search, can be enhanced to tackle specific constraints. 
Second, simple algorithms can be applied after an efficient standard 
k-shortest path algorithm to filter the solutions violating the constraints 
until the expected number of paths is obtained. This approach allows 
the combination of several filters, and does not require difficult exten-
sions or sophisticated search algorithms. Using pathfinding algorithms 
implemented in the BioMaze workbench showed the feasibility of this 
approach on biochemical networks, such as KEGG. Examples of efficient
k-shortest path algorithms can be found in (51,52).

It is often useful to describe or visualize the context of a known 
pathway or discovered path within the larger biochemical network; e.g., 
to map/show all nodes in the larger network positioned at up to a speci-
fied distance from (a node in) the pathway. Here, too, it is useful to define
a weight policy to enhance the meaning of the context. Context extrac-
tion is not restricted to simple pathways and can be performed on any 
biochemical (sub)networks. Context extraction can also be done simul-
taneously on several pathways to analyze their interactions.

Standard graph techniques can furthermore be used to identify basic 
building blocks (modules) within the network, which might carry out 
well-defined functions. At the coarsest level, the network is simply seg-
mented into substructures using clustering procedures. Several proce-
dures for performing such graph segmentation, such as MCL (53), 
MCODE (54), or RNSC (55), have been developed. Such techniques 
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have been applied on protein–protein interactions to identify larger 
complexes (56), as well as on metabolic networks (57).

At the next level, the classic graph techniques can be used for motif 
discovery and analysis. Alon and co-workers (58,59) analyzed transcrip-
tional regulation networks of Escherichia coli to uncover its underlying 
structural design, by means of the discovery of network motifs. They 
defined a network motif as a pattern of interconnections occurring in 
networks with a significantly higher frequency than what would be 
expected in random networks. This analysis relies on sophisticated algo-
rithms for the generation of random networks that have been applied to 
other networks in neurobiology, ecology, and engineering. This approach 
is supported by mfinder, a network motifs detection tool (60). A similar 
approach, supported by a faster algorithm is described in (61). Finally, 
MAVisto is a tool for the exploration of motifs in network (62). It 
provides a flexible motif search algorithm and different views for the 
analysis and visualization of network motifs.

4.2. Advanced Artificial Intelligence Techniques

Constraint programming is a programming paradigm derived from artifi -
cial intelligence that uses constraints as basic computational elements. In 
this approach, the user specifies a set of constraints that a solution must 
meet, rather than computation steps to obtain such a solution. Constraints 
thus allow stating complex relationships between objects without having 
to consider how to enforce them, which reduces development time and 
maintenance significantly. Constraint programming has been successfully 
applied in a number of areas, including molecular biology, electrical 
engineering, operations research, and numerical analysis (63,64,65).

Many analysis problems of biochemical networks can be expressed as 
combinatorial graph problems. Although such problems can be modeled 
within constraint programming, such modeling is not always easy, as 
graphs are not a standard computation domain of constraint program-
ming. Recently, constraint programming has been extended by intro-
ducing a new computation domain focused on graphs, including a new 
type of variables (graph domain variables), and providing constraints 
over these variables (66). This declarative framework allows sophisti-
cated, constrained subgraph extraction in biochemical networks. Possible 
examples are as follows: find all pathways traversing a set of specified
compounds or reactions; given a set of coregulated enzyme coding genes, 
find a pathway that can be formed with the reactions catalyzed by these 
enzymes; find all genes whose expression is directly or indirectly affected 
by a given compound; show which paths or pathways may be affected 
when one or more gene/proteins are turned off or missing. In such a 
constrained path/subgraph extraction, various constraints or properties 
on the resulting path/subgraph can thus be modeled: properties of nodes, 
size of the path/subgraph, context of the path (e.g., no enzyme-coding 
gene regulated by a given set of genes), and relation between different 
parts of the subgraph.

Comparing different biochemical networks is an important topic in 
systems biology. Typical problems include the comparison of biochemical 
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pathways from different organisms and tissues, or at different stages of 
annotation, the highlighting of common features and differences, and the 
prediction of missing elements. These problems are instances of graph-
matching problems. An example of a method for aligning metabolic 
pathway is described in Pinter et al. (67). Other examples can be found 
in the PPI networks, where key problems on graphs include aligning 
multiple graphs, finding frequently occurring subgraphs in a collection of 
graphs, discovering highly conserved subgraphs in a pair of graphs, and 
finding good matches for a subgraph in a database of graphs. An example 
of such techniques can be found in Koyuturk et al. (68), where other 
relevant references can also be found. Another example is pathBLAST 
(69), a tool offering a general strategy for aligning two protein interac-
tion networks to elucidate their conserved linear pathways.

Given the incompleteness and the potential lack of reliability of exist-
ing biochemical networks, a challenging issue is to handle approximate
graph matching. Constraint programming, and its extension on graphs, 
enables approximate graph matching where various constraints can also 
be stated upon the graph pattern (70). Potential approximations are 
declaratively stated in the pattern graph as mandatory/optional nodes/
edges; forbidden edges, that is, edges that may not be included in the 
matching, can be declared on the pattern graph. Other constraints 
between nodes can also be stated.

The extraction of relevant subgraphs can also be achieved through 
data-mining techniques. A typical problem is the following: given a set 
of nodes in a biochemical network (e.g., a set of genes), extract a sub-
graph that best captures the relationships between the given nodes of 
interest. Simplistic approaches, such as extracting the shortest distance 
or maximal flow paths between each pair of nodes of interest, do not 
really capture the relationship between all the given nodes. A better 
approach, based on electrical network interpretation, has been proposed 
in (71), but is restricted to two nodes of interest. A more general approach, 
based on commute time distance and spectral graph analysis, allows a 
direct solution to the general problem with any number of nodes of 
interest (72).

5. Implementation Aspects 

The BioMAZE workbench is an environment for the representation and 
analysis of biochemical networks. It integrates the BioMAZE database, 
which implements the data model described in section 2.2, as well as 
various analysis and visualization tools. This section briefly sketches the 
architecture of the BioMaze workbench and describes the available 
functionalities

5.1. The Architecture

The architecture of the BioMAZE workbench can be described as 
follows:
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• The Snow system, a workbench for graph management.
• The Igloo database management system dedicated to network data.
• The VisualBioMAZE component, which is a biochemical networks 

visualization tool.
• The BioEdges component, which is a collection of tools dedicated to 

the analysis of biological network.

The flexibility of the system comes from the integration of these tools 
as plug-ins into the Eclipse environment (73). Figure 8 illustrates a view 
of the BioMAZE workbench. Its Application Programming Interface 
(API) is public, enabling programmers to implement their own plug-ins 
to extend the system and provide new functionalities in a seamless way. 
The Visualization aspects of BioMaze are outside the scope of this 
chapter and will not be described here.

Most of the BioMAZE components are independent of the biological 
data and could therefore be used in different application domains 
dealing with network data. The BioMAZE environment thus provides 
an open extensible environment for network analysis and network 
representation.

5.2. Functionalities

5.2.1. Graph Management
The Snow system is the kernel of the workbench, interconnecting the 
different tools and providing the basic features. Snow is in charge of data 
import and export, basic graph edition functionalities, and data browsing. 
It also provides the user interface for the Igloo DBMS.

5.2.2. Database Management
Igloo is the database management layer in charge of querying and editing 
(creating and modifying) the entities stored in the database. It also 
handles the process of loading and annotation of the data. In addition, 
Igloo provides an Extended Entity Relationship API and the Igloo 
Query Language for database interrogation. Moreover, Igloo hides the 
underlying data storage organization, which is a PostgreSQL relational 
database. The data model is not hard-coded inside the application but is 
retrieved from an external repository. Igloo can therefore be used in 
many other application domains, by simply retrieving alternative data 
models. It is furthermore an independent database management system 
available as a stand-alone Java library.

Until recently, there were no readily accessible universal sources for 
pathway information. The current data content of the BioMaze database 
has therefore been assembled by semiautomatic data loading from 
diverse external sources and through manual curation.

This situation seems to be evolving, however, with the creation of the 
BioPAX consortium (21). This consortium is a collaborative effort to 
develop a file format suitable for exchanging data on biological path-
ways. The BioPAX format now covers metabolic pathways, PPI, and 
signal-transduction data. It is expected to evolve into the accepted stan-
dard for data-exchange format for biochemical networks. Several 
pathway resources (KEGG, MetaCyc, and Reactome) already output 
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data in BioPAX format, and most other database providers (TranPath, 
IHNO, etc.) are currently working on such export software. The 
BioMAZE database exports data in BioPax format, and will be able to 
import any data provided in BioPAX format and correctly merge it using 
the provided unification information.

5.2.3. BioEdge
The BioEdge component implements most of the graph analysis 
functionalities described in section 4. BioEdge is organized as an extend-
able set of Eclipse plug-ins, providing Eclipse views in the BioMaze 
workbench. Each view is thus an independent tool for analyzing a bio-
chemical network. The tools can be combined, enabling the output of 
one analysis to be processed further by other tools. The constraint satis-
faction tools are implemented in the gecode generic constraint develop-
ment environment (a C++ library) (74) and interfaced with the Eclipse 
plug-ins.

The tolls currently available in BioEdge are path and graph properties, 
context explorer, constrained k-shortest path extractor, subgraph extrac-
tion, constrained path and subgraph finding, path and graph matching, 
approximate path and graph constrained matching, motif extraction, and 
analysis.

6. Concluding Remarks

This chapter discussed two important challenges that need to be met if 
Systems Biology is to exploit the vast amounts of new data on biochemi-
cal networks that are being derived worldwide. One deals with deriving 
appropriate conceptual frameworks for representing the data on bio-
chemical networks of different types and the other deals with methods 
of analyzing various global and local properties of these networks. Both 
are key to developing systems biology approaches that are firmly
grounded on state of the art biological data.

The availability of resources from which relevant network graphs and 
molecular properties can be retrieved and seamlessly pipelined into 
modeling or simulation software, such as Gepasi (75) or SmartCell (76), 
or for that matter into any analysis software, should become routine. But 
clearly more work is needed to make this level of integration possible. 
In particular, ways need to be found (through the extension of existing 
models or deriving new dedicated ones) for representing information on 
rate and equilibrium constants associated with various elementary bio-
chemical processes (catalysis, association, degradation, etc.).

But other, more difficult, problems loom large on the horizon. Cur-
rently, the biochemical networks stored in the databases represent 
a compendium of possible events and interactions: those that can occur 
under different experimental conditions at different time points, dif -
ferent cellular compartments, and in different cellular populations. 
The resulting networks and modules derived from them therefore rep-
resent, at best, some kind of cumulative time–space ensembles of what 
might be taking place in the cell. Increasingly aware of these shortcom-
ings, researchers are starting to look for meaningful ways of deconvolut-
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ing these ensembles. An obvious way is to incorporate temporal 
considerations. But this is a difficult task because accurate temporal 
parameters are not readily available for phenomena, such as PPIs, tran-
scription, or degradation. However, efforts in collecting temporal data 
are under way, with the fast spreading use of transcription profiling,
mRNA decay times, or protein expression profiling. Quite a number of 
resources dealing with archiving and analyzing genes expression data are 
currently available and standard exchange formats for these data have 
also been derived.

In the future, genome-wide experimental procedures will be geared 
to measuring gene and protein expression levels, PPIs, and metabolite 
concentrations in a time-dependent fashion, and under strictly controlled 
experimental conditions. Better ways of synchronizing cell populations 
might also be available. This should allow us to deconvolute the static 
networks that we are examining today into more biologically relevant, 
time-dependent, and condition-dependent networks, which may also 
vary according to the cell type and the cellular compartment. These net-
works will include many different types of nodes and edges simultane-
ously (gene–protein, protein–protein, and compound–enzyme), but 
specific nodes and edges will vary as a function of time and conditions. 
This will be the key step that will make systems-level modeling and 
simulation of cellular processes a realistic and useful undertaking.
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Appendix I
Software, Databases, and Websites 

for Systems Biology

511

Category Name Function Platform Developer/Provider

Algorithms Clover Search for Transcription Web (http://zlab.bu.edu/ Boston University
Factor Binding Sites clover) (free)

DBRF- Deducing Minimum  Koji Kyoda and
MEGN Equivalent Gene Networks  Shuichi Onami

from Large-Scale Gene  (free)
Expression Profiles

Gossip Automated functional Web (gossip.gene- Nils Blüthgen, and
interpretation of gene groups.net) MicroDiscovery
groups  (free)

OptGene Platform for in silico Web (www.cmb.dtu.dk) Kiran R. Patil and
metabolic engineering UNIX/Windows Jens Nielsen
through evolutionary
programming

OptKnock Platform for in silico Web (http://maranas. Anthony Burgard
metabolic engineering che.psu.edu/) and Costas Maranas
through bilevel linear
optimization

Reporter Find metabolites around Web (www.cmb.dtu.dk) Kiran R. Patil and
metabolites which most changes in UNIX/Windows Jens Nielsen

expression occur

TFGossip Association of Web (http://tfgossip. Nils Blüthgen,
Transcription Factor gene-groups.net) Humboldt
Binding Sites with Factors  University
using GOSSIP

Data mzData The aim of mzData is to XML Schema Proteomics
formats  unite the large number of  Standards

current mass spec data  Initiative
formats into one

mzXML A standardized output XML Schema Institute for
format for mass  Systems Biology
spectrometry

Databases BIND Biomolecular Interaction Web (http://www.bind.ca/ Mount Sinai
Network Database, Action) Hospital
containing a curated set of
interactions

BioModels Curation of quantitative Web (http://www.ebi.ac.uk/ EMBL-EBI (free)
biological models biomodels) (http://

biomodels.net)
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Category Name Function Platform Developer/Provider

BLAST Similarity Search Web (http://www.ncbi. NCBI (free)
nlm. nih.gov/BLAST)

DBTSS Database of transcription Web (http://dbtss.hgc.jp/) University of Tokyo
start sites

DIP Database of Interacting Web (http://dip.doe-mbi. UCLA
Proteins, containing a ucla.edu/)
curated set of protein-
protein interactions

EnsEMBL Annotated genomes and Web (http://www.ensembl. European
Perl interface org) Bioinformatics

Institute

EPD Eukaryotic promoters Web (http://www.epd. Swiss Institute of
isb-sib.ch) Bioinformatics

FANTOM Annotated mouse Web (http://fantom3.gsc.  Riken
transcriptome riken.jp)

GPMDB A repository for data from Web accessible The Global
tandem mass spectrometry  Proteome Machine

Organization

GRID Comprehensive database  Web (http://biodata.mshri. B.J. Breitkreutz, 
of genetic and physical on.ca/grid/) C. Stark, M. Tyers
interactions for yeast, fly,
and worm

HomGL Storing, Mapping, and Web (www.gene-groups.net) Nils Blüthgen (free)
Comparison of gene 
groups

HPRD Visually depict and Web Commercial (free
integrate information (http://www.hprd.org) for research)
pertaining to domain
architecture,
posttranslational
modifications, interaction
networks, and disease
association for each 
protein in the human
proteome

iHOP Text-mining. Information Web (http:// www. Robert Hoffmann
Hyperlinked Over Proteins ihop-net.org/UniPub/ and Alfonso

iHOP/) Valencia

Jaspar Profiles of transcription Web (http://jaspar.cgb. Karolinska
factor binding sites ki.se) Institute (free)

Karma Mapping of diverse Web (http://biryani. Yale
identifiers from multiple med.yale.edu/karma/cgi-bin/
array platforms and mysql/karma.pl)
organisms

Open OPD is a public database Web accessible University of Texas
Proteomics for storing and  at Austin
Database disseminating mass

spectrometry-based
proteomics data

PEDRoDB Storing, searching, and Web accessible University of
disseminating experimental  Manchester
proteomics data

PRIDE PRIDE is a centralized, Web accessible European
standards compliant,   Bioinformatics
public data repository for  Institute
proteomics data
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Category Name Function Platform Developer/Provider

ProbematchDB Mapping between two Web (http://brainarray.mhri. University of
array platforms med.umich.edu/ Michigan

brainarray)

Resourcerer Mapping of human, mouse Web (http://www.tigr.org/ TIGR
and rat microarray gene tigr-scripts/magic/r1.pl)
identifier

SGD Saccharomyces Genome Web (http://www. SGD Project
Database. Very complete yeastgenome.org/)
resource of genomic
information for S.
cerevisiae

STRING Database of known and Web (http://string.embl.de) EMBL. Peer Bork
predicted protein-protein  Group
interactions

SWISS2D- Two-dimensional Web accessible Swiss Institute of
PAGE polyacrylamide gel  Bioinformatics

electrophoresis database

Transfac Profiles of transcription Web (http://www.gene- Partially free,
factor binding sites regulation.com) commercial,

BioBase

YEAST Data set of systematic Web Cellzome AG
protein analysis of yeast protein (http://yeast.cellzome.com.)
complex complexes with TAP tag
database

Gene MiCoViTo Visualization of groups  Web (http://transcriptome. Gaëlle Lelandais
centered  of genes having similar ens.fr/micovito)
approach  expression in two sets of

microarray experiments

yMGV Data mining interface for Web (http://www. Philippe Marc
microarray data with easily transcriptome. ens.fr/ymgv)
interpretable and mostly
graphical outputs

Gene GO The Gene Ontology  Web (http://www. Gene Ontology
ontology  project provides a geneontology. org) Consortium

controlled vocabulary to 
describe genes and gene
product attributes in any 
organism

GoMiner GoMiner is a tool for Web (http://discover.nci.
biological interpretation nih.gov/gominer)
of gene expression Windows/MacOS/ Linux
microarrays using GO
annotations

Protégé Ontology editor and Web (http://protege. Free, open-source
knowledge-base stanford.edu)
framework

Modeling CellDesigner Modeling/simulation tool Web (http://systems- Systems-biology.org;
of biochemical networks biology.org/002/001. Funahashi A, 
with graphical user html) (http://www. Kitano H (free)
interface celldesigner.org)

Windows/MacOSX/
Linux
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Category Name Function Platform Developer/Provider

Cellerator Computer-algebra based Web (http://xcellerator. Caltech/Univ. of
conversion of biochemical info) California, Irvine
arrows to differential
equations

CellML 1.1 Biological model UNIX/Windows Catherine M. Lloyd
specification and reuse  (free)

CellML2SBML Converts CELLML files to Web (http://sbml.org/ Univ.
SBML files software/cellml2sbml) Hertfordshire/

EMBL-EBI

Kegg2SBML Converts KEGG files to Web (http://sbml.org/ Systems-biology.org
SBML with CellDesigner kegg2sbml.html)
tags

libSBML Library providing an API Web (http://sbml.org/ Caltech
for SBML file libsbml.html)
manipulation

MathSBML Package for Manipulating Web (http://sbml.org/ Caltech, Bruce
SBML-based Biological mathsbml.html) E. Shapiro (free)
Models in Mathematica UNIX/Windows/Macintosh/

  VMS

SBML Computer-readable format Web (http://www.sbml. Free, standard
(System for representing models of org) driven by
Biology biochemical reaction  community needs
Markup networks
Language)

SBML SBML Model Editor Web (http://www.ebi.ac. EMBL-EBI
Editor  uk/compneur-srv/

SBMLeditor.html)

SBML MatLab package for using Web (http://sbml.org/ Univ. Hertfordshire
Toolbox SBML models software/sbmltoolbox)

Sigmoid Cellerator-based pathway Java/Web (http://sigmoid. Univ. of California,
database management sf.net) Irvine

Virtual Cell Modeling and Simulation Web (http://www.nrcam. Data are freely
Framework uchc.edu) available if shared

by submitter

XPPAUT ODE solver and Web (http://www.math. Univ. Pittsburgh
phase plane analysis pitt.edu/~bard/xpp/

xpp.html)

Networks Osprey Platform for visualization Web (http://biodata. The GRID team
of complex interaction mshri.on.ca/osprey) (free for academic
networks UNIX/Windows/ use)

Macintosh

PathBLAST Alignment of Protein  Whitehead Institute
Interaction Networks

ProViz Tool for visualization of Web (http://cbi.labri.fr/ LaBRI. David
protein-protein interaction eng/proviz.htm) Sherman
graphs

SBGN Graphical notation for Web (http://sbgn.org) Systems-biology.org
SBML

Orthology INPARANOID Program that  Web (http://inparanoid. Erik Sonnhammer
detection  automatically detects sbc.su.se)/Linux
method  orthologs (or groups of 

orthologs) from two 
species
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Category Name Function Platform Developer/Provider

OrthoMCL OrthoMCL provides a Web (http://www.cbil. Li Li
scalable method for upenn.edu/gene-family)
constructing orthologous
groups across multiple
eukaryotic taxa

Pathways BioPax Data exchange format for Web (http://www.biopax. Free
biological pathway data org)

SigPath Information system Web (http://www.sigpath. Data and code are
designed to support org) freely available
quantitative studies on the
signaling pathways and
networks of the cell

Ingenuity Model, analyze, and Web (http://www.ingenuity. Commercial
Pathway understand complex com)
database biological systems

Proteomics ProteinProspector Proteomics tools for MS Web (http://prospector. The University of
tools  data mining, including ucsf.edu/) California San

database search and  Francisco
programs simulating MS
pattern

Software Data mining tools for MS Web (http://www. The Institute for
tools analysis, including proteomecenter.org/ Systems Biology

validation identification software.php)
and quantification of
peptide and protein

Search MASCOT Comparing the recorded Web (http://www. Matrix Science Ltd.
engine  MS or MS/MS spectrum matrixscience.com/

with theoretical masses home.html)
from protein database

Sequest Comparing the recorded Web (http://fields.scripps. The Scripps
MS/MS spectrum with edu/sequest/index.html) Research Institute
theoretical masses from
protein database
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Glossary

Apoptosis Apoptosis (programmed cell death) is the process 
by which a cell commits suicide.

Application Application Programming Interface (API)
Programming is the interface that a computer system, 
Interface library, or application provides in order to 

allow requests for services to be made of it by 
other computer programs, and/or to allow data 
to be exchanged between them.

Biochemical  Biochemical reaction is a process by which one
reaction or more components are transformed by a bio-

chemical system. A biochemical system often 
consists of one enzyme, with or without 
cofactors.

Bistabilility Bistabilility means that a dynamical system has 
two stable steady-states for a certain set of 
parameters.

Bistable A system that exhibits two unique, stable steady- 
states is said to be bistable.

Boolean search Boolean search terms are the logic terms 
terms AND, OR, and NOT, which are used to make 

database searches precise.
Cellular automata Cellular automata, composed of massively simple, 

autonomous, and interacting computational 
components (cells), are an important parallel 
com putational paradigm. They were first intro-
duced by J. von Neumann and S. Ulam and are 
widely used to model dynamics of large, paral-
lel systems. Standard cellular automata are 
rule-based and discrete in space, time and 
value. Various nonstandard extensions have 
been developed to meet particular require-
ments of parallel computation in specific fields.
Language-based cellular automata use a pro-
gramming language, instead of rules, to describe 
computation in the cell.
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Chemical reaction Chemical reaction is a process by which one or 
more components are chemically transformed. 
Mass and charge are conserved through a 
given chemical reaction. A chemical reaction 
may proceed spontaneously.

Collision-Induced In Collision-Induced Dissociation (CID),
Dissociation accelerating voltage provides ions with energy 

of motion, and the ions collide with the inert 
gas molecules in the collision cell of MS 
instrument. Collision energy is converted to 
internal energy to induce dissociation of the 
ion. CID is divided into two classes, lower-
energy CID and high-energy CID, depending 
on MS equipment, and the former is frequently 
used for proteomics analysis.

Compendium A compendium of expression profiles is an 
expression matrix composed of a large number 
of DNA microarray experiment results.

Component Component is a molecule, an ion, or an arrange-
ment of molecules and ions that participate in 
interactions in a signaling pathway. Compo-
nents are objects.

Data  Data standard is a documented agreement 
standard on the format of data.

Diffusion-limited  Diffusion-limited rate is the first encounter rate.
rate

Diffusivity Diffusivity is the proportionality constant used 
to describe diffusive flux as linearly propor-
tional to the negative of the concentration 
gradient (Fick’s law).

DNA microarrays DNA microarrays are tools providing direct 
access to transcriptome analysis.

Efficiency Efficiency is the quick and complete response in 
adaptation to different needs.

Emergent  Emergent properties are shown only by collec-
properties tive systems. They are created by the emergent 

interaction among entities in systems.
Endocytosis Endocytosis is the process in which areas of the 

plasma membrane invaginate and pinch off to 
form intracellular vesicles.

Exciton Exciton is an excited state of an insulator or 
semiconductor that allows energy to be trans-
ported without transport of electric charge; 
may be thought of as an electron and a hole in 
a bound state.

Extensible Markup  Extensible Markup Language (XML) is a
Language W3C-recommended general-purpose markup 

language for creating special-purpose markup 
languages, capable of describing many differ-
ent kinds of data. XML is a way of describing 
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data, and an XML file can contain the data too, 
as in a database. Its primary purpose is to 
facilitate the sharing of data across different 
systems, particularly systems connected via the 
Internet.

First principle  First principle modeling is modeling based on 
modeling known physical, chemical, and biological infor-

mation. In subcellular processes, it often starts 
from the stochastic kinetic equations.

Flexibility Flexibility is the ability a cell has to adapt to a 
wide range of environmental conditions.

Fractal kinetics Fractal kinetics is a kinetic law for dimension-
restricted reactions that do not follow tra-
ditional mass-action kinetics. The kinetic 
coefficient of fractal kinetics is not a constant, 
but a time-dependent function. When a reac-
tion occurs under steady-state conditions, 
kinetic order reflects the dimensional restric-
tion of reaction.

Gel electrophoresis Gel electrophoresis is a separation method in 
which a protein mixture is loaded onto a gel 
and subjected to an electric current, causing 
individual proteins to migrate a particular dis-
tance depending on a property, such as their 
molecular weight.

Gene Ontology Gene Ontology (GO) is a structural network 
consisting of defined terms and relationships 
between them that describe three attributes of 
gene products, which are Molecular Function, 
Biological Process, and Cellular Component.

Gene regulatory  Gene regulatory network is an arrangement of 
network genetic interaction, in space and time, to 

produce a given function.
Genotype Genotype is the specific genetic makeup of an 

individual, i.e., the specific genome encoding 
the total potential inventory of cellular 
resources of the organism.

GenPept GenPept is a comprehensive protein database 
that contains all of the translated coding 
regions of GenBank sequences.

GNU Lesser  GNU Lesser General Public License (LGPL) 
General Public  is a free software license published by the
License Free Software Foundation. It was designed as 

a compromise between the strong-copyleft 
GNU General Public License (GPL) and 
simple permissive licenses, such as the BSD 
licenses and the MIT License. The LGPL is 
intended primarily for software libraries, 
although it is also used by some stand-alone 
application.
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Graphical User  Graphical User Interface (GUI) is a method of 
Interface interacting with a computer through a meta-

phor of direct manipulation of graphical images 
and widgets, in addition to text. GUIs display 
visual elements such as icons, windows, and 
other gadgets.

GTPase–activating  GTPase–activating protein (GAP) is a protein
protein that facilitates the GTP hydro lysis by a GTP-

binding protein.
Guanine nucleotide  Guanine nucleotide exchange factor (GEF) 

exchange factor  is a protein that catalyzes the exchange of 
GDP for GTP for a GTP-binding protein.

Hill curve Hill curve is a sigmoidal curve often used to 
describe the reaction rates for uncooperative 
enzymes . It is also used to fit sigmoidal stimu-
lus-response curves.

Homologs Homologs are genes coming from a common 
evolutionary ancestor.

Hoppers Hoppers are species that hop from the first
“trapping” point to the next in discontinuous 
manner, called “hopping conduction,” when 
the species are electrons.

Hysteresis Hysteresis is a property of a system where the 
state of the system is not independent of its 
history. Different steady-states are reached, 
depending on whether a bifurcation parameter 
increases or decreases (a kind of “memory”). 
As a parameter is increased, the system jumps 
to the alternative state at a particular value 
of the parameter. However, if the parameter 
decreases, the system jumps back to the 
original state at a lower parameter value. 
Bistable systems exhibit hysteresis.

In vivo and in vitro In vivo and in vitro differences are the 
differences differences in molecular parameters between 

the values measured in “test tube” (in vitro)
and in native biological environment (in
vivo).

Interaction Interaction is a chemical and biochemical reac-
tion (e.g., phosphorylation, protein cleavage) 
or biochemical process (e.g., transport across a 
membrane, transcription, translation).

Ion-trap analyzer In the ion-trap analyzer, the ions are first cap-
tured in the trapping space, and then ejected 
by increasing the voltage to obtain the MS 
spectrum. For MS/MS analysis, the selected ion 
is isolated and dissociated into fragment ions 
with low-energy CID in the trapping space. 
MS/MS spectrum is obtained in the same 
manner described above.
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Java Java is an object-oriented programming language 
developed by James Gosling and colleagues at 
Sun Microsystems in the early 1990s. Unlike 
conventional languages, which are generally 
designed to be compiled to native code, Java is 
compiled to a bytecode which is then run by a 
Java virtual machine.

Java Native  Java Native Interface (JNI) is a programming 
Interface framework that allows Java code running in 

the Java virtual machine to call and be called 
by native applications and libraries written 
in other languages, such as C, C++ and
assembly.

Java Runtime  Java Runtime Environment (JRE) is the 
Environment software required to run any application 

deployed on the Java Platform.
Java Web Start Java Web Start (JWS) is a framework developed 

by Sun Microsystems that enables starting Java 
applications directly from the Web using a 
browser.

Law of Mass Action Law of Mass Action is that the speed of a 
chemical reaction is proportional to the 
quantity of the reaching substances.

Liquid  Liquid chromatography is one of the chro-
chromatography matography methods to separate the mole-

cules using liquid as mobile phase. Cation-
exchange and reverse-phase methods are 
widely used for peptide analysis.

Lysis Lysis is the developmental phase in which the 
bacterium is eaten by the phage.

Lysogeny Lysogeny is the developmental phase in which 
the phage lives together with the bacterium.

Mass Spectrometry Mass Spectrometry (MS) is a technique for 
determining the mass of a substance. Mass 
spectrometry is frequently used in proteomics 
to identify proteins.

Metabolic  Metabolic engineering is the application of 
engineering directed genetic modifications to improve the 

properties of a given cell, e.g., to improve yields 
or productivities, to expand substrate range 
utilization or to insert heterologous pathways 
for the production of novel products.

Metabolic flux Metabolic flux is the rate of conversion of 
one metabolite into another by an enzyme 
catalyzing the corresponding metabolic 
reaction.

Metabolic network Metabolic network is a set of connected meta-
bolic reactions. The term can be used when 
referring to part or to the whole set of reac-
tions occurring in a cell.
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Michaelis-Menten  Michaelis-Menten kinetics describes the 
kinetics rate of enzyme mediated reactions for many 

enzymes. This is valid only in the particular 
case of steady-state, where the concentration 
of the complex enzyme-substrate is constant. 
The Michaelis-Menten constant KM deter-
mines the substrate level at which the reaction 
rate reaches half the maximal value.

Minimum  Minimum Information about a Microarray Ex- 
Information periment (MIAME) is a microarray experi-
about a ment international standard that encloses
Microarray   all the description of the experiment needed 
Experiment to understand how data have been processed.

Minimum  Minimum quantitative modeling is the 
quantitative minimum detailed physical and chemical 
modeling modeling, which captures the essential biolo g-

ical feature and allows a quantitative com-
parison between theoretical calculations and 
biological data. Its physical and chemical 
parameters are fixed by other independent 
experiments. In the present case, in the 
minimum modeling, only one operon site was 
considered with a reduced configuration. All 
others are treated effectively as possible con-
tributions to in vivo and in vitro differences.

Monte Carlo  Monte Carlo methods are a class of computa-
methods tional algorithms for simulation using random 

numbers.
Neofunctionalization A neofunctionalization event creates after a 

duplication event a new copy of the gene 
duplicated with a new function not found in 
the ancestor gene.

Network evolution Network evolution can be phylogenetic, meaning 
signaling network changes during species 
evolution from simple to complex organisms, 
or ontogenetic, meaning signaling network 
changes during embryonic development from 
an egg to a multicellular adult. Here, it means 
the evolution of wiring among active genes 
and proteins during development.

Newtonian fluid Newtonian fluid is a fluid in which shear stress is 
linearly proportional to the velocity gradient 
in the direction perpendicular to the plane of 
shear. The constant of proportionality is known 
as the viscosity.

Object-oriented  Object-oriented programming is a computer 
programming programming paradigm. The idea is that a 

computer program is composed of a collection 
of individual units, or objects, as opposed to a 
list of instructions. It means to package, or 
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encapsulate, data and functionality together 
into units, and each object exposes an interface 
to allow other objects to interact with it. 
Usually, objects interact and communicate 
with each other using message passing, and 
their action depends on both the current state 
and the received messages.

Ontology Ontology is a digital representation of knowl-
edge, usually comprising a collection of con-
trolled terms with agreed definitions.

OpenMP OpenMP is a set of programming protocol to run 
a program on a computer with shared memory 
and multiple CPU to enhance performance.

Ordinary  Ordinary Differential Equation (ODE) is
Differential a relation that contains functions of only one 
Equation independent variable, and one or more of its 

derivatives with respect to that variable. Many 
scientific theories can be expressed clearly 
and concisely in terms of ordinary differential 
equations.

Orthologs Orthologs are two genes that predate a specia-
tion event and that code functionally equiva-
lent proteins that arise from evolution.

Orthology Orthology defines the relationship between 
genes in different species that originate from 
a single gene in the last common ancestor of 
these species.

Paralogs Paralogs are two genes that have arisen by dupli-
cation events and whose function generally 
have diverted from the original ancestor.

Parameter Parameter is a fixed quantity in a mathematical 
model, as opposed to a variable.

Percolation Percolation concerns the movement and filtering
of fluids through porous materials.

Phage l Phage l is the bacterium-eating virus living on 
the bacterium E. coli.

Phenotype Phenotype is the observable physical or bio-
chemical characteristics of an organism, as 
determined by both genetic makeup and envi-
ronmental influences. The observable some-
times results from the activation of a cellular 
process, as determined by genetic makeup 
of the cell under study or by environmental 
influence (cell medium, temperature, and 
other experimental conditions). Apoptosis is 
an example of a phenotype that can be 
observed at the cell level (cells die at the 
completion of the apoptosis program) and at 
the biochemical level (DNA fragmentation is 
a marker for apoptosis).
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Potential landscape Potential landscape is the visualization of the 
potential function in the stochastic dynamical 
structure analysis. It provides a graphic picture 
of robustness and stability.

Principal  Principal component analysis is a decom-
component position method that linearly transforms a 
analysis high-dimensional dataset into a low-dimen-

sional space. The original space is transformed 
into a new coordinate system in such a way 
that the data with the greatest variance defines
the first axis (also called first principal com-
ponent), and the second principal component 
is the vector orthogonal to the first principal 
component that captures most of the remain-
ing variance (and so on for the other axis).

Proteomics Proteomics is the simultaneous investigation of 
all the proteins in a cell or organism.

Quadrupole-TOF In the hybrid type of quadrupole-TOF, the ion 
is selected with quadrupole mass-filter and 
dissociated in the collision cell located behind 
the quadrupole. The masses of fragment ions 
are recorded with TOF (Time-of-flight) ana-
lyzer to obtain the MS/MS spectrum.

Reaction-diffusion  Reaction-diffusion equation is a partial dif-
equation ferential equation that contains partial deriva-

tives in respect to two or more independent 
variables and describes both the temporal be-
havior and diffusion in space.

Reporter  Reporter metabolites are metabolites in the 
metabolites metabolic network of an organism around 

which most changes in expression occur.
Reverse two-hybrid Reverse two-hybrid system is a modification of 

Y2H bearing a suicide reporter gene to select 
against protein-protein interactions, in con-
trast with conventional Y2H. It is useful to 
isolate interaction-defective alleles.

Robustness Robustness is the insensitivity of biological func-
tions to various disturbances.

Sodium Dodecyl  Sodium Dodecyl Sulfate-Polyacrylamide Gel
Sulfate-  Electrophoresis (SDS-PAGE) is a method
Polyacrylamide widely used for separation of proteins accord-
Gel ing to their molecular weights, in which 
Electrophoresis proteins denatured with SDS are electropho-

resed in a polyacrylamide gel.
Soft ionization  Soft ionization methods have been developed to 

methods enable the ionization of large biomolecules, 
including proteins, without any destruction. 
They include MALDI (Matrix-Assisted Laser 
Desorption Ionization) and ESI (Electro-Spray 
Ionization).
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Spatial  Spatial concentration gradient is a gradual 
concentration change in the concentration over a specific
gradient distance.

Species Species is a synonym for component.
Steady state Steady state is a dynamic system state that does 

not change over time. If a system is described 
by differential equations, a steady state is 
determined by equating the time derivatives of 
all variables to zero.

Stochastic dynamical Stochastic dynamical structure analysis is the 
structure analysis tentative name for the novel mathematical 

structure that emerges from the λ switch study. 
It has four dynamical elements: the potential 
function, the degradation matrix, the trans-
verse matrix, and the stochastic drive. Among 
those four dynamical elements, the degrada-
tion matrix is constrained by the stochastic 
drive.

Stochastic kinetic  Stochastic kinetic equations are the chemical
equations rate equations that describe the molecular 

processes inside a single cell.
Stochasticity Stochasticity is the random aspect of the sub-

cellular dynamical processes. It may originate 
from the randomness embedded in dynamics 
(intrinsic noise) or from fluctuating environ-
mental condition (extrinsic noise).

Sub-functionalization A sub-functionalization event separates after a 
duplication event two gene functions in the 
separated copies that were originally present 
in the ancestor gene.

Supertrapps Supertrapps are species that cannot transfer 
freely and are localized by a trapping point of 
lattices, such as impurities or a broken lattice 
of a crystal.

Systems Biology  Systems Biology Graphical Notation (SBGN)
Graphical is a visual notation for network diagrams, 
Notation such as biochemical reaction and gene-

regulatory networks, which is commonly used 
in the field of computational systems biology. 
The goal of the SBGN effort is to help stan-
dardize a graphical notation for computational 
models in systems biology. For example, it will 
add rigor and consistency to the usually ad 
hoc diagrams that often accompany research 
articles in publications. It will also help bring 
consistency to the user interfaces of different 
software tools and databases.

Systems Biology  Systems Biology Markup Language (SBML)
Markup Language is a machine-readable language, derived from 

XML, for representing models of biochemical 
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reaction networks. SBML can represent meta-
bolic networks, cell-signaling pathways, regula-
tory networks, and other kinds of systems 
studied in systems biology.

Systems Biology  Systems Biology Workbench (SBW) is a soft-
Workbench ware framework that allows heterogeneous 

application components, written in diverse 
programming languages and running on differ-
ent platforms, to communicate and use each 
other’s capabilities via a fast binary-encoded 
message system. SBW enables applications 
(potentially running on separate, distributed 
computers) to communicate via a simple 
network protocol.

Temporal dynamics Temporal dynamics is a quantitative description 
of how a system changes over time.

Transcriptome The transcriptome is the expression level of all 
the genes expressed in a cell at any given 
time.

Ultrasensitivity Ultrasensitivity describes a response that is more 
sensitive than a Michaelis-Menten curve. Often 
used synonymously with sigmoidality.

XML Schema XML Schema is a language for defining the 
structure and content of XML documents.

Yeast two-hybrid Yeast two-hybrid (Y2H) system is a molecular 
genetic method to detect protein-protein inter-
actions. In Y2H, proteins X and Y are expressed 
as hybrid proteins with DNA-binding domain 
and transcription activation domain, respec-
tively. The former and latter hybrids are often 
called bait and prey, respectively. An interac-
tion between bait and prey, or X and Y, recon-
stitutes a transcription factor activity, which 
can be readily detected by use of reporter 
gene.

l switch l switch is the gene regulatory network in phage 
λ deciding the switching from lysogeny to 
lysis.
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EFGR. See Epidermal growth factor receptor
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microarray standards for, 149–150
profile compendium of, 148–149
specific biological processes in, 149

Extended Entity Relationship, 488, 501
EXtensible Markup Language (XML), 395–396

SBML and, 395–396
schemas for, 411

F
False positives (FPs), 173

biological, 173
in PPIs, 173
technical, 173

Family-wise error rates (FWER), 76
FANTOM. See Functional Annotation of the Mouse
FBA. See flux balance analysis
FBP. See Fructose 1,6-biphosphate
Fevers, 326–327

disease and, 326
Fields, Stanley, 171
File formats, 381

in signaling pathways, 381–382
BioPax, 382

CellML, 381
evolution of, 381
HUPO PSI, 381
SBML, 381

for SigPath Project, 384
Filtering tasks, 223
FL-cDNA. See Full-length cDNA
Fluorescence recovery after photobleaching (FRAP) 

analysis, 275
DRRK modeling and, 276

Flux balance analysis (FBA), 42, 48–49
of Omics data, 48–49
in predictive models for metabolic engineering, 

58–59
Fluxomics, 193
FPs. See False positives
Fractal kinetics, 264–266
FRAP. See Fluorescence recovery after 

photobleaching analysis
Fructose 1,6-biphosphate (FBP), 449, 464–465
Full-length cDNA (FL-cDNA), 85, 87–89, 90

captrapping of, 88–89
cloning of, 87
microarrays for, 92
in Mouse Encyclopedia Project, 86–90
selection problems with, 87

Functional Annotation of the Mouse (FANTOM), 78, 
85–86, 94–100

FANTOM1, 94–96
FANTOM2, 94–96
FANTOM3, 96–100

CAGE data in, 99
dataset resources, 96
functional RNA research for, 98–99
gene definitions within, 97
ncRNA in, 98–99
novel NRN continent of, 96–97
S/AS RNA in, 99
TD in, 96
TF in, 96
TK in, 96
TU decrease in, 97, 99

RTPS pipeline for, 95
FWER. See Family-wise error rates

G
GA. See Genetic algorithm
Galactose utilization pathways, 44

with Omics data, 46
GAL systems, 46–47. See also Galactose utilization 

pathways
Gap analysis, 22

gap filling and, 22
in metabolic network reconstruction, 22

Gap filling, 22
Gas chromatography-mass spectrometry (GC-MS), 

52
Gaussian white noise, 357–359
GC-MS. See Gas chromatography-mass spectrometry
GEF. See Guanine nucleotide exchange factor
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Project

accession numbers for, 70–71
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EST in, 70
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HomGL and, 71–73
homologs for, 71
LocusLink, 71, 73
NCBI and, 70, 73
RefSeq and, 71, 73
SwissProt and, 70
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analysis pipeline for, 80
conversion of, 72
DAG for, 74–75
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functional interpretation of, 74–78

multiple testing, 76–77
GO annotations for, 69, 77–78

data sources for, 74
FDR with, 76
FWER with, 76
profiling with, 74–76
software for, 77–78
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phylogenetic footprinting for, 79
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Gene ontology (GO), 69, 74–76

data sources for, 74
FDR with, 76
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signaling pathways and, 376–377
software for, 77–78

Gene Ontology (GO) Consortium, 376
Genes, 4

cross-species comparisons and, 147–148
in genomes, 38
groups, 69–81

accession numbers for, 70–71
inference networks, 435–436, 438
regulatory networks for, 4

Gene signature cloning (GSC), 86
in “bow-tie structures,” 139–140

Genetic algorithm (GA), 467
Genetic engineering, 40
Genome reconstruction, 16–17

bilinear transformation in, 17
chemical reaction rates as factor for, 17–18
reaction stoichiometry in, 17
steady-state networks and, 18
thermodynamics as factor in, 17

Genomes, 14–34
BIGG structured databases for, 14–15

graphical representations of, 15
mathematical representations of, 15
textual representations of, 15

in cells, 34–35
DNA sequencing for, 14
genes within, 38
metabolic network reconstruction and, 15, 18–23

1D annotation for, 18–20, 22
automation of, 23
constraint-based model formulation for, 

19–23
information sources for, 18–19
organism properties for, 15
systems boundaries within, 25–26

in mice transcriptome analysis, 101–102
reconstruction of, 16
transcriptional analysis for, 49

Genome-scale metabolic networks, 41–42
FBA in, 42
ORFs and, 41
reporter metabolites as part of, 42

Genome sequencing, 38–40
for DNA, 14
in metabolic networks, 124, 126
in TRNs, 124, 126

Genomics, 3
in adaptive evolution, 186–187
genotype-phenotype analogies for, 187
infrastructure analogies for, 187

Genotypes, 186–187
in adaptive evolution, 186–187

Giant strong components (GSC), 139–140
GIS. See Gene identification signature
Glycolysis, 323–325

in neutrophils, 323–325
GO. See Gene ontology
Goldbeter-Koshland switch, 287
GPCRs. See G protein-coupled receptors
G protein-coupled receptors (GPCRs), 300–301

GTP exchange for, 301
Graph theory

biochemical networks and, 494–496
bipartite graphs in, 496
compound graphs in, 494–496
general graphs in, 496
reaction graphs in, 494–496
standard graph techniques for, 497–499

BioMAZE and, 501–502
database management under, 501–502

for metabolic networks, 125, 131–134
metabolite graphs as part of, 131–132
reaction graphs as part of, 131
for TRNs, 131–134

Green fluorescence protein (GFP), 198
for subcellular location, 198

GSC. See Gene signature cloning; Giant strong 
components

Guanine nucleotide exchange factor (GEF), 305
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H
Hexose monophosphate shunt (HMS) activation, 

319
NAD[P]H and, 330
during pregnancy, 328–329

Highly Optimized Tolerance models, 7
High-performance liquid chromatography (HPLC), for 

whole cell measurements, 190–191
Hill coefficients, 283–286, 290

in ultrasensitive signaling cascades, 283–284
Hinton diagrams, 236, 238
HMS activation. See Hexose monophosphate shunt 

activation
HomGL, 71–73

for gene group accession numbers, 71–72
Homologs

in cross-species comparisons, 151
for gene group accession numbers, 71
orthologs as, 151
paralogs as, 151

“Hopping,” 263–264
“Horizontal basic science,” 102
HPLC. See High-performance liquid chromatography
HPRD. See Human Protein Reference Database
Human Genome Project, 337
Human Protein Reference Database (HPRD), 380
Human Proteome Organization, 474
HUPO PSI (file format), 381

I
ICAT. See Isotope/coded affinity tag strategy
Information theoretic weight matrix, 108–114

SVM as part of, 110–114
conventional, 111
Gaussian probabilities in, 110–111
one-class, 111
QPMEME and, 111
ROC analysis of, 111–112
SELEX methods, 110

INOH (data model), 487
“In Silico Design and Adaptive Evolution of 

Escherichia coli for Production of Lactic Acid,” 
31–33

OptKnock in, 31–32
In silico models, for metabolic networks, 19, 21, 29–33

“In Silico Design and Adaptive Evolution of 
Escherichia coli for Production of Lactic Acid,” 
31–33

“Integrating High-throughput and Computational 
Data Elucidates Bacterial Networks,” 29–31

“Integrating High-throughput and Computational 
Data Elucidates Bacterial Networks,” 29–31

Integrative models, for metabolic engineering, 56–58
NCA as part of, 58

Interaction sequence tag (IST), 174
in PPIs, 174

Interactome mapping, 173–175, 179
for PPIs, 173–175, 179

International Union of Biochemistry and Molecular 
Biology (IUBMB), 127

In vitro reactions, 262, 269–275
in DRRK models, 269–275

EcoRv and, 269–273
experiment planning for, 269–275
reaction order estimations for, 272–274
simulation results of, 274–275
In vivo v., 262

in phage λ model, 347–348
In vivo reactions

in DRRK modeling, 261–263, 275–276
experiment planning for, 275–276
fractal kinetics and, 275
FRAP analysis for, 275
ODEs and, 262
PDEs and, 262
In vitro v., 262

in phage λ model, 347–348, 351–353
Kramers rate formula in, 352

Isobaric tags for relative and abundance qualifications
(iTRAQ) methods, 52

Isotope/coded affinity tag (ICAT) strategy, 52
in stable isotope labeling, 169–170

IST. See Interaction sequence tag
iTRAQ methods. See Isobaric tags for relative and 

abundance qualifications methods
IUBMB. See International Union of Biochemistry and 

Molecular Biology

J
Java Runtime Environment (JRE), 427
JRE. See Java Runtime Environment

K
Kalman filter models, 217
Kinetics

fractal, 264–266
zero-order, 284

Kite networks, 136–137
measurements for, 137

K-means clustering, 56
Kramers rate formula, 351–352

in phage λ model, 352

L
Large-scale analysis, for proteins, 165–167

data set comparisons in, 166–167
FLAG in, 165–167
genome-wide, 167
ORFs and, 167
TAP in, 165–167

LC. See Liquid chromatography
LC-MS. See Liquid chromatography-mass 

spectrometry
LibSBML (Systems Biology Mark-Up Language 

library), 409
API and, 409

Linear dynamical systems (LDS), 217
Lipopolysaccharide (LPS), 325

NAD[P]H and, 325
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Liquid chromatography (LC), 162
HPLC, 190–191
LC-MS, 52

protein identification with, 163
Liquid chromatography-mass spectrometry (LC-MS), 

52
protein identification with, 163

LocusLink, 71, 73
gene group accession numbers for, 71, 73

LPS. See Lipopolysaccharide

M
MALDI. See Matrix-assisted laser desorption/

ionization
MAPK. See Mitogen-activated protein kinase cascade
Mass spectrometry (MS), 51

of Cdk, 168
under PEDRo model, 477
for PPIs, 160–171
tandem, 161

CID in, 162
LC for, 162

TOF, 161
Mass spectrometry, tandem (MS/MS), 160–162
Mass spectrometry, time-of-flight (TOF-MS), 161
MathSBML, 395, 400–401, 410, 412–420

API command control under, 413
command summary, 414
mathematical expressions in, 400–401
model editors under, 418–420
model imports for, 414–415
names under, 415–416
simulation models for, 416–418
subsets of, 401
summary of, 413
variable scoping for, 415–416

MATLAB, 410
Matrix-assisted laser desorption/ionization (MALDI), 

161
Maturation-promoting factor (MPF), 424–425

process diagram for, 425
in SBGN, 424–425

MCA. See Metabolic control analysis
Melatonin, 323–324, 326

NAD[P]H and, 324
neutrophils and, 323–324

Messenger RNA (mRNA), 191–192
genome-scale measurements for, 191–192

Metabolic control analysis (MCA), 285–286
Metabolic engineering, 40–41

for cells, 40–41, 47–48
models for, 53–59

classical, 54–56
integrative, 56–58

with Omics data, 45–49, 53
2DE and, 51
clustering for, 56
FBA and, 48–49
galactose utilization pathways and, 46
GC-MS and, 52

ICAT strategy for, 52
iTRAQ method and, 52
LC-MS and, 52
metabolite profiling and, 46
MS and, 51
PCA for, 46, 55–56
predictive models, 53, 58–59
quantification of, 49–53
signaling network reconstruction and, 

46–47
statistical significance analysis of, 54–55
technology summary for, 50–51
traits identification and, 45–46

Penicillium chrysogenum and, 40
prediction of, 48–49
reverse, 45
transcriptome analysis in, 49–53

Metabolic fluxes, 38, 41–45
GAL system and, 44
metabolic networks and, 41–45
quantitative analysis of, 52–53
regulation of, 42–45

“Metabolic footprinting,” 191
Metabolic networks, 38, 41–45, 124–143. See also

Metabolic networks, reconstruction of
enzyme databases for, 126
genome-scale, 41–42

FBA in, 42
ORFs and, 41
reporter metabolites as part of, 42

genomic sequencing in, 124, 126
graph theory for, 125, 131–134
integration of, 130–131, 134
IUBMB and, 127
metabolic fluxes and, 41–45

GAL system and, 44
regulation of, 42–45

metabolites in, 138
for Streptococcus pneumonia, 132
structural analysis of, 134–143

APL in, 134–136
“bow-tie,” 138–141
degree distribution as part of, 134–136
multilayer acyclic structures and, 141–143
network centrality as part of, 136
scale-free networks and, 134

Metabolic networks, reconstruction of, 15, 18–34
1D annotation for, 18–20, 22
2D annotation for, 34
3D annotation for, 33
4D annotation for, 33
automation of, 23

Enzyme Commission numbers for, 23
Pathway Tools for, 23

constraint-based model formulation for, 19–23
assembly of, 22
biochemical reaction definitions within, 

20–22
constraint identification within, 26–27
evaluation of, 23
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Metabolic networks, reconstruction of (cont.)
gap analysis in, 22
ORFs and, 20
in silico, 19, 21
stoichiometry in, 20, 24–25
substrate specificity within, 20

Enzyme Commission numbers in, 127
Enzyme Genomics Initiative and, 127
genome-based, 125–126
high-quality, 127–128
information sources for, 18–19

growth performance as, 19
medium composition as, 19
secretion products as, 19

matrix representations of, 24–25
network states analysis tools for, 27–29

Alternate Optima as, 28
best/optimal, 27
OptKnock as, 28–29
unbiased modeling as, 29

ORFs in, 125
organism properties for, 15
pathways for, 128
In silico models for, 19, 21, 29–33

“In Silico Design and Adaptive Evolution of 
Escherichia coli for Production of Lactic Acid,” 
31–33

“Integrating High-throughput and Computational 
Data Elucidates Bacterial Networks,” 29–31

systems boundaries within, 25–26
TRN reconstruction v., 129

Metabolism, 38. See also Metabolic networks; 
Metabolic networks, reconstruction of

oscillatory, 319
processes of, 38
systems biology and, 39

Metabolites
currency, 131–132
in graph theory, 131–132
“metabolic footprinting” and, 191
in metabolic networks, 138
in metabolomics, 193–194
Omics data profiling of, 46
reporter, 42, 48
Streptococcus pneumonia and, 132
whole cell measurements and, 190–191

by HPLC, 190
Metabolomics, 193–194

metabolites in, 193–194
Michaelis-Menten enzyme reactions, 265–266
MiCoViTo. See Microarray Comparison Visualization 

Tool
Microarray Comparison Visualization Tool 

(MiCoViTo), 153–154
Microarray Gene Expression Data Society, 149
Microarray technology

clustering and, 115–116
in cross-species comparisons, 148–149, 149–150
for DBNs, 219
for DNA, 49

for FL-cDNA, 92
MiCoViTo, 153–154
yMGV, 153

Minimization of metabolic adjustment (MOMA), 59
Mitogen-activated protein kinase cascade (MAPK), 

282
endocytosis in, 311–312
RTK signaling and, 302, 307, 310–311
ultrasensitive signaling cascades and, 284, 292

Modern control theory. See Control theory, modern
Molecular biology, 3
MOMA. See Minimization of metabolic adjustment
Motifs, in transcriptional control networks, 116–117, 

119
Mouse Encyclopedia Project, 86–94

DNABook and, 91–92
FL-cDNA use in, 86–90

cloning of, 87
microarrays of, 92

high throughput sequence analysis systems in, 91
internal cleavage avoidance in, 88
mouse choice in, 86
mRNA elongation strategies for, 88
new vector constructions for, 90
normalization/subtraction technologies in, 90–91
RISA in, 91
transcriptome dataset for, 86

CAGE data in, 86, 92–93
GIS data in, 86, 93–94
GSC data in, 86, 93–94

Mouse Genome Database, 74
MPO. See Myeloperoxidase
mRNA. See Messenger RNA
mRNA elongation strategies, 88

in Mouse Encyclopedia Project, 88
RT for, 88

MS. See Mass Spectrometry
MS/MS. See Mass spectrometry, tandem
Multilayer acyclic structures, 141–143

for metabolic networks, 141–143
for TRNs, 141–143

Myeloperoxidase (MPO), 319, 322–323
cycle for, 323
experimental verification of, 323
in neutrophils, 322–323

N
NAD[P]H. See Nicotinamide adenine dinucleotide
National Center for Biotechnology 

Information(NCBI), 70, 73, 126
gene group accession numbers of, 70, 73

National Institutes of Health (NIH), 101
Navier-Stokes equation, 9–10
NCA. See Network component analysis
ncRNA. See Noncoding RNA
Nerve growth factor (NGF), 302
Network centrality, 136

“closeness,” 136
Kite networks and, 136

measurements for, 137
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Network component analysis (NCA), 58
Neutrophils, 319–333

activation of, 332
Belousov-Zhabotinskii reaction and, 320
biomechanisms of, 325–331

diabetes and, 327–328
endogenous factors and, 326
exogenous factors and, 325–326
fevers, 326–327
LPS in, 325
PMA and, 326
pregnancy immunomodulation and, 328–331, 333

computation biology of, 321–325
glycolysis in, 323–325
MPO in, 322–323
NAD[P]H in, 322

HMS activation in, 319
Melatonin and, 323–324
as model system, 320–321
MPO translocation in, 319
oscillations and, 319–321

NGF. See Nerve growth factor
NICD. See Notch intracellular domain
Nicotinamide adenine dinucleotide (phosphate) 

(NAD[P]H), 320, 322–325, 330–332
HMS enzymes and, 330
LPS and, 325
Melatonin concentrations and, 324
neutrophils and, 322

NIH. See National Institutes of Health
Noncoding RNA (ncRNA), 85

in FANTOM 3, 98–99
Nonintegral Connectivity Method (NICM), 449–465

applications of, 452–455
computational implementations under, 468
connectivity rules for, 455–462

feedback motifs under, 462
feedforward motifs under, 462
linear-chain motifs under, 455–457, 459–461

FBP under, 449, 464–465
fitness values for, 467–468
GA under, 467, 470
local network connectivity flowchart for, 453
methods for, 450–462

depletion wave terms and, 452–453
perturbation coefficients and, 451–452, 457–459

steady-state interaction maps in, 450
tolerance under, 468
yeast glycolic network analysis under, 463–464, 

468–469
S. cerevisiae, 463–464, 468

Nonlinear dynamics theory, 3
“Nonself” biological entities, 6–7
Notch intracellular domain (NICD), 250
Notch signaling propagation models, 249–256

captured signaling in, 251
EGF in, 249
gene expression profiles for, 252
methods of, 250–251
NICD in, 250

ODE for, 250
PSM in, 249–250
results of, 251–252
signaling profiles for, 252

O
Object-oriented programming (OOP), 242
Occam’s Razor, 225, 227, 338

effects of, 225, 227
OD. See Optical density
ODEs. See Ordinary differential equations
Omics data, 45–53

2DE and, 51
clustering for, 56

hierarchical, 56
K-means, 56
self-organized maps, 56
“similarity of genes” and, 56

FBA of, 48–49
galactose utilization pathways with, 46
GC-MS and, 52
ICAT strategy for, 52
iTRAQ method and, 52
LC-MS and, 52
metabolite profiling and, 46
MS and, 51
PCA for, 46, 55–56

PC1, 55
PC2, 55

predictive models with, 53, 58–59
biomass production within, 59
EFM in, 59
FBA in, 58–59
MOMA in, 59
reporter metabolites in, 58

quantification of, 49–53
signaling network reconstruction with, 

46–47
GAL system and, 46–47

statistical significance analysis of, 54–55
Benjamin-Hochberg correction, 55
Bonferroni correction, 55

technology summary for, 50–51
traits identification with, 45–46

OOP. See Object-oriented programming
Open reading frames (ORFs), 20

genome-scale metabolic networks and, 41
in large-scale protein analysis, 167
in metabolic network reconstruction, 125
subcellular location prediction and, 199
in Y2H, 173

Optical density (OD), 189
OptKnock, 28–29

in “In Silico Design and Adaptive Evolution 
of Escherichia coli for Production of Lactic 
Acid,” 31–32

Ordinary differential equations (ODEs), 230
in Notch signaling propagation models, 250
for SBML, 422
In vivo reactions and, 262
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ORFs. See Open reading frames
Orthologs, 150–151, 155–157
Oscillations, 296, 319–321

chemical, 320
in eukaryotes, 320
NAD[P]H in, 320
neutrophils and, 319–321
in prokaryotes, 320
RTK signaling and, 302

P
PANTHER pathway system, 429
Paralogs, 151
Partial differential equations (PDEs), 253

in PCP models, 253
In vivo reactions and, 262

Pathway Tools, 23
PCA. See Principal component analysis
PCP models. See Planar cell polarity models
PDEs. See Partial differential equations
PEDRo model. See Proteomics Experimental Data 

Repository model
Penicillium chrysogenum, 40
Peptide mass fingerprinting (PMF), 160–161

MALDI for, 161
trypsin in, 161

Phage λ model, 336–365
controlling regions of, 342
diagrams of, 342
genetic switch in, 337–348

bistability of, 357–360
Gaussian white noise in, 357–359
life cycle of, 339–340
modeling strategies for, 340–341
robustness in, 338, 356–357, 361
spontaneous induction in, 339

mathematical modeling for, 361–364
predictions of, 361–362

modeling methodologies in, 359, 362–364
Boolean logic circuit, 363–364
“curse of dimension” in, 364
empirical, 363
literature sampling, 363
principle, 363

quantitative modeling for, 342–348
binding configurations in, 341–343
deterministic, 343–347
homeostatic equilibrium in, 343
operator configurations in, 344
parameters in, 345
In vivo v. In vitro with, 347–348

stochastic dynamical structure of, 336, 342, 348–351, 
353–355

analysis of, 350–351
driving force potential gradients in, 351
friction, 350–351
Kramers rate formula in, 351
minimum quantitative model and, 348–350
transverse force in, 351

theory v. experiment for, 351–361

epigenetic state lifetime in, 360
protein distribution in, 360
relaxation time in, 360
In vivo parameters and, 351–353

wild type, 353–354
lytic switching in, 358

Phenotype plasticity, 6
Phenotypes

genome-scale measurements for, 191–194
fluxomics and, 193
metabolomics and, 193–194
mRNA and, 191–192
proteins and, 192
proteomics and, 192

signaling pathways and, 373–374
whole cell measurements for, 188–191

growth rates and, 188–190
metabolite secretions and, 190–191
OD and, 189
respiration rates and, 190
robustness and, 189

Phenotypes, whole cell, 183, 186–187
in adaptive evolution, 186–194
measurements for, 188–191

growth rates and, 188–190
metabolite secretions and, 190–191
OD and, 189
respiration rates and, 190
robustness and, 189

in PCP models, 255
Phorbomyristate acetate (PMA), 326
Phylogenetic footprinting, 79

transcriptional control networks and, 116–117, 119
Pierre (PEDRo application), 480–482
Planar cell polarity (PCP) models, 252–256

features of, 253–255
intracellular movement during, 254
methods for, 253–255
PDE in, 253
phenotypes in, 255
results for, 255–256
in signaling networks, 252–256

PMA. See Phorbomyristate acetate
PPIs. See Protein-Protein Interactions
Prediction tasks, 223–224
Predictive models, for metabolic engineering, 53, 

58–59
biomass production within, 59
EFM in, 59
FBA in, 58–59
MOMA in, 59
reporter metabolites in, 58

Pregnancy, 328–331
diabetes during, 329–330
HMS enzymes during, 328–329
immunomodulation during, 328–331, 333
immunoregulation during, 330–331
physiologic regulations during, 328–330
trophoblasts during, 330–331

Presomitic mesoderm (PSM), 249–250
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Principal component analysis (PCA), 46, 55–56
Prokaryotes, 107

oscillations in, 320
TRN reconstruction methods for, 129

Protein Atlas project, 200
Protein-Protein Interactions (PPIs), 160–179

BioMAZE and, 485
MS for, 160–171

affinity purification and, 164–165
in complex samples, 162–163
EFGR and, 171
focused analysis in, 167–169
large-scale analysis in, 165–167
MS/MS with, 160–162
PMF and, 160–161
protein identification with, 160–163
stable isotope labeling for, 169–171
TNF and, 169

Y2H-based, 160, 171–179
AD in, 172
alternative, 178–179
benefits/disadvantages of, 172–173
DBD in, 171–172
FPs in, 173
interactome mapping for, 173–175, 179
IST in, 174
principles of, 171–172
reverse, 175–177
split ubiquitin system in, 178–179
three-hybrid systems and, 177–178

Proteins, 4, 38. See also Protein-Protein Interactions; 
Proteomics

actin, 38
architecture of, 168
bait, 164
Cdk, 167–168
cross-species comparisons and, 147–148
genome-scale measurements for, 192
large-scale analysis for, 165–167
phosphoproteins, 310–311
Protein Atlas project and, 200
in proteomics, 192
in regulatory networks, 38
ubiquitin, 178–179

Proteomics, 192, 196–212, 472–482
databases for, 474–475
experimental processes under, 473
GO annotations and, 197
Human Proteome Organization and, 474
location, 196–212

clustering in, 207–209
focus of, 196–197
knowledge-capture approach to, 197
sequence prediction from location approach to, 

197–198
PEDRo model, 475–482

API and, 481
data capturing under, 478–482
future applications of, 482
MS under, 477

Pierre as part of, 480–482
protein separation under, 477

Protein Atlas project and, 200
PSI, 474
subcellular locations and, 198, 200–212

automated analysis for, 200–207
GFP for, 198
image databases and, 199–200
image segmentation of, 202–203
immunofluorescence for, 198
ORFs and, 199
pattern models for, 209–212
protein-tagging methods for, 198–199
SLFs for, 200–201
trees for, 209

Proteomics Experimental Data Repository (PEDRo) 
model, 475–482

API and, 481
data capturing under, 478–482
future applications of, 482
MS under, 477
Pierre as part of, 480–482
protein separation under, 477

Proteomics Standard Initiative (PSI), 474
PSI. See Proteomics Standard Initiative
PSM. See Presomitic mesoderm

Q
QPMEME. See Quadratic programming method for 

energy matrix estimation
Quadratic programming method for energy matrix 

estimation (QPMEME), 111–114
for dinucleotide models, 112–114
extended, 112–114

R
“Random percolation,” 263
Reaction graphs, 131
Reaction stoichiometry

in genomic reconstruction, 17
in metabolic network reconstruction, 20

Receiver operating characteristic (ROC), 217, 232–235
sensitivity as, 232
specificity as, 232
for SSMs, 217, 232–235

Receptor tyrosine kinase (RTK) signaling, 300–313
autophosphorylation of, 301
complex temporal dynamics for, 305–306

feedback loops and, 306
GEF and, 305

EGFR network in, 302–304
CH linkers for, 303
computational modeling of, 302–303
“macrostates” in, 304
“macrovariables” for, 304
network complexity within, 303–304
scaffolds within, 304

endocytosis in, 311–312
GPCRs in, 300–301
malfunctions of, 301
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Receptor tyrosine kinase (RTK) signaling (cont.)
MAPK and, 302, 307, 310–311
NGF in, 302
oscillations and, 302
phosphoprotein gradients during, 310–311
scaffolding, 312–313
spatial dimensions of, 306–311

gradients in, 307–310
membrane recruitment in, 307
scaffolds in, 307

universal cycle motifs in, 305
Reconstruction. See Metabolic networks, 

reconstruction of
RefSeq, 71, 73

gene group accession numbers for, 71, 73
RegulonDB, 107
Reporter metabolites, 42, 48

in predictive models, 58
Representative Transcript and Protein Sets (RTPS), 

95
Reverse metabolic engineering, 45
Reverse transcriptase (RT), 88
Reverse Y2H. See Reverse yeast two-hybrids
Reverse yeast two-hybrids (Reverse Y2H), 175–177

dual-bait, 176
interaction-defective allele isolation with, 175
mapping interaction domains through, 175
separate-of-function alleles isolation with, 175–176

Riken Integrated Sequencing Analysis (RISA), 91
RISA. See Riken Integrated Sequencing Analysis 

(RISA)
Robustness, 5–8

cancers and, 7–8
decoupling and, 6–7
Diabetes mellitus and, 7
disease and, 7
diversity as part of, 5
of epidemic states, 8
evolvability and, 5, 7–8
fail/safe mechanisms for, 6
feedback loop control and, 8
Highly Optimized Tolerance models and, 7
modularity and, 6–7
“nonself” biological entities and, 6–7
of phage λ model, 338, 356–357, 361
phenotype plasticity and, 6
in phenotypes, 189
redundancy and, 6
in systems biology, 5–8
tradeoffs between, 7

ROC. See Receiver operating characteristic
RT. See Reverse transcriptase
RTK signaling. See Receptor tyrosine kinase signaling
RTPS. See Representative Transcript and Protein Sets

S
Saccharomyces, 117–119

phylogenetic tree for, 117
site conservation among, 118

yeast glycolic network analysis of, 463–464
for S. cerevisiae, 463–464

SAGE. See Serial analysis of gene expression
SBGN. See Systems Biology Graphical Notation
SBML. See Systems Biology Mark-Up Language
SBW. See Systems Biology Workbench
Scaffolds, 304

in RTK signaling, 304, 307, 312–313
in EGFR network, 304
spatial dimensions for, 307

Scale-free networks, 134
SDA. See Stepwise discriminate analysis
SDGs. See Signed direct graphs
SELEX methods, 107

for SVM, 110
Sense/anti-sense (S/AS) pairing, 85

in FANTOM 3, 99
Serial analysis of gene expression (SAGE), 92

CAGE v., 93
TSS within, 94

Signaling networks, 242–258. See also Receptor
tyrosine kinase signaling; Ultrasensitive 
signaling cascades

adjacency matrix as, 248–249
CA in, 242
connectors within, 243–244
discrete molecular, 245–246
dynamic capture for, 247–248
in eukaryotes, 282
event action tables integration with, 246–247
event-driven computation in, 245
evolvability and, 242–243
molecular interactions in, 246
Notch signaling propagation models, 249–256

EGF in, 249
gene expression profiles for, 252
methods of, 250–251
NICD in, 250
ODE for, 250
PSM in, 249–250
results of, 251–252
signaling profiles for, 252

OOP in, 242
parallel, 244–245
PCP models, 252–256

features of, 253–255
intracellular movement during, 254
methods for, 253–255
PDE in, 253
results for, 255–256

reconstruction of, 248–249
regulators within, 244
state transition map for, 243
topology of, 257
two-tier parallelism for, 244–245

Signaling pathways, 372–383
applications for, 375–378

biochemical modeling in, 378
fact searches in, 375–376
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gene context in, 376
with gene ontology, 376–377
interaction database in, 377
network properties in, 378
statistical analyses in, 377
structural properties in, 377–378

in biomedical research, 379–383
cartoon representations in, 380
databases for, 382–383
file formats in, 381
HPRD and, 380
ontologies in, 382
structured representations in, 380–383
text representations in, 379–380

E. coli and, 377
exogenous chemicals and, 372
modeling for, 374–375
phenotypes and, 373–374
in SigPath Project, 383–389

architecture of, 383–384
data collection for, 384–385
data deletion within, 388–389
data transfers within, 387–388
file format for, 384
information management approach to, 

384
literature level for, 385–386
ontology of, 384
qualitative level for, 386
quantitative level for, 386–387

Signal transduction
under BioMAZE, 492–493
in systems biology, 4–5

Signed direct graphs (SDGs), 436–437
SigPath Project, 383–389

architecture of, 383–384
data collection for, 384–385
data deletion within, 388–389
data transfers within, 387–388
file format for, 384
information management approach to, 384
literature level for, 385–386
ontology of, 384
qualitative level for, 386
quantitative level for, 386–387

“Similarity of genes,” 56
SLFs. See Subcellular location features
Smoothing tasks, 223
Snow system, 501
SOFs. See Subcellular object features
Spontaneous induction, 339
SSMs. See State-space models, Linear-Gaussian
Stable isotope labeling, 169–171

methods of, 169–171
chemical, 169–170
ICAT, 169–170
metabolic, 170–171

PPIs and, 169–171
MS for, 169–171

trypsin in, 170
State-space models (SSMs), Linear-Gaussian, 

217–239
AUC in, 217, 234–235
EM for, 224
Hinton diagrams for, 236, 238
input-dependent, 222
ML methods, 224
modeling time series with, 220–228

ARD and, 225, 227
data feedback in, 221–222
dimensionality determinations in, 226–228
gene expression and, 222–223
hidden state correlations in, 236, 238
hyperparameters of, 225
Occam’s Razor effect and, 225
output success of, 221
parameter learning in, 234
prior specifications in, 224–226
state estimation in, 223–224
topology of, 220–222
variables of, 220–222

ODEs for, 230
realistic simulated data in, 229–232, 235
ROC analysis for, 217, 232–235
synthetic data in, 229, 237
VBSSMs, 230–231

Statistical significance analysis, 54–55
Benjamin-Hochberg correction, 55
Bonferroni correction, 55

Steady-state networks, 18
Stepwise discriminate analysis (SDA), 203
Stochasticity, 348–349

in systems biology, 348–349
Stoichiometric inhibition, 290
Stoichiometry. See Reaction stoichiometry
Streptococcus pneumonia

metabolic networks for, 132
metabolite graphs for, 132

Subcellular location features (SLFs), 200–206
2-D, 201, 203–206
3-D, 202–206
alternative image classification of, 206
classification of, 203–206

Subcellular locations, 198, 200–212
automated analysis for, 200–207
feature selection for, 203

SDA and, 203
GFP for, 198
image databases and, 199–200
immunofluorescence for, 198
ORFs and, 199
pattern models for, 209–212

generative, 211–212
object-based, 210–211
SOFs in, 210

protein-tagging methods for, 198–199
in proteomics, 198, 200–212
SLFs for, 200–206
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Subcellular locations (cont.)
2-D, 201, 203–206
3-D, 202–206
alternative image classification of, 206–207
classification of, 203–206

trees for, 209
Subcellular object features (SOFs), 210
Substrates

for cells, 38
precursor metabolites and, 38

Support vector machines (SVM), 110–114
conventional, 111
Gaussian probabilities in, 110–111
one-class, 111
QPMEME and, 111–114

for dinucleotide models, 112–114
extended, 112–114

ROC analysis of, 111–112
SELEX methods, 110

SVM. See Support vector machines
SwissProt, 70, 73

gene group accession numbers for, 70, 73
Systems biology, 3–11, 17–18, 39

adaptive evolution and, 184–186
methodology for, 186

cellular regulatory circuits in, 106
central dogma of, 43
control methods within, 4
design for, 4
dynamics within, 4
gene regulatory networks in, 4
metabolism and, 39
properties of, 17–18, 422
robustness in, 5–8

decoupling and, 6–7
disease and, 7
diversity as part of, 5
of epidemic states, 8
evolvability and, 5, 7–8
fail/safe mechanisms for, 6
feedback loop control and, 8
Highly Optimized Tolerance models and, 7
modularity and, 6–7
“nonself” biological entities and, 6–7

self-organization in, 319–320
signal transduction in, 4–5
steady-state networks and, 18
stochasticity in, 348–349
structure identification within, 4
technology platforms for, 8–10

CFD as, 9
computational cellular dynamics and, 10
SBML as, 8
Systems Biology Graphical Notation as, 8
Systems Biology Workbench as, 8

Systems Biology Graphical Notation (SBGN), 8
CellDesigner and, 422–424, 432–433
components of, 424
MPF in, 424–425

process diagram for, 425

Systems Biology Mark-Up Language (SBML), 8, 
395–420

BioModels database under, 411–412
CellDesigner and, 422–423, 425–429, 431–433
conversion utilities for, 410–411
evolution of, 396–398
as file format, 381

in signaling pathways, 381
goals of, 396
Level 2 models for, 398–406

array extensions of, 407
compartments in, 402–403
diagramming in, 408
dynamic modeling in, 408
events in, 405–406
function definitions for, 401–402
hybrid modeling in, 408
object hierarchy within, 399–400
parameters within, 403, 408
reactions within, 404–405, 407
rules of, 403–404
spatial features in, 408
species in, 403, 406
units definitions for, 402, 406
vocabulary controls in, 407

LibSBML, 409
MathSBML, 395, 400–401, 410, 412–420

API command control under, 413
command summary, 414
mathematical expressions in, 400–401
model editors under, 418–420
model imports for, 414–415
names under, 415–416
simulation models for, 416–418
subsets of, 401
summary of, 413
variable scoping for, 415–416

MATLAB under, 410
model survivability from, 396
modifications to, 406–408
ODE for, 422
online tools for, 409
UML diagram, 400
workshops for, 397
XML in, 395–396

schemas for, 411
Systems Biology Workbench (SBW), 8, 422–423, 427, 

431, 433
CellDesigner and, 422–423, 427

T
Tandem affinity purification (TAP), 165

in large-scale protein analysis, 165–167
TAP. See Tandem affinity purification
TD. See Transcriptional Desert
TF. See Transcriptional forest
TFs. See Transcription factors
Thermodynamics, 17
TK. See Transcriptional Framework
TNF. See Tumor necrosis factor
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TOF-MS. See Mass spectrometry, time-of-flight
Tradeoffs, between robustness, 7
Transcriptional control networks, 106–119

Boltzmann factor in, 109
DNA binding sites and, 107, 109
DNA sequences and, 114–116
DPInteract and, 107
in eukaryotes, 107
evolution in, 116–117
information theoretic weight matrix and, 108–114

SVM as part of, 110–114
initiation of, 106–107
motifs in, 116–117, 119
one-class classifiers within, 119
phylogenetic footprinting and, 116–117, 119
in prokaryotes, 107
RegulonDB and, 107
SELEX method for, 107
TFs in, 106

Transcriptional Desert (TD), 96
Transcriptional forest (TF), 96
Transcriptional Framework (TK), 96
Transcriptional regulatory networks (TRNs), 124–143

enzyme databases for, 126
genomic sequencing in, 124, 126
graph theory for, 125, 131–134
integration of, 130–131, 134
ORFs in, 125
reconstruction methods for, 125–126, 128–130

in eukaryotes, 130
metabolic v., 129
in prokaryotes, 129

structural analysis of, 134–143
APL in, 134–136
“bow-tie,” 138–141
degree distribution in, 134–136
multilayer acyclic structure, 141–143
network centrality in, 136–138
scale-free networks and, 134

Transcriptional units, 86
in FANTOM 3, 97, 99

Transcription factors (TFs), 106, 133
Transcription start sites (TSSs), 78, 86

CAGE and, 92
SAGE and, 94

Transcriptome analysis, 49–53, 85
for mice, 85–100

FANTOM, 78, 85–86, 94–100
genome network analysis for, 101–102
genome technologies for, 101
Mouse Encyclopedia Project, 86–94
tiling arrays for, 100–101

TRANSFAC (data model), 487
TRANSPATH (data model), 487
TRNs. See Transcriptional regulatory networks
Trophoblasts, 330–331
Trypsin, 161–162

in stable isotope labeling, 170
TSSs. See Transcription start sites
Tumor necrosis factor (TNF), 169

2DE. See 2 dimensional electrophoresis
2 dimensional electrophoresis (2DE), 51

U
Ubiquitin, 178–179

in PPIs, 178–179
split system for, 178–179

Ultrasensitive signaling cascades, 282–296
feedback effects on, 291–296

adaptation as, 295–296
bifurcation analysis of, 292
bistability, 291–294
linear response as, 294–295
oscillations as, 296
transduction cascades and, 292

MAPK cascades and, 284, 292
mechanisms for, 286–291

cooperative binding as, 290–291
EFGR and, 288
multiple modification sites and, 288–290
sensitivity amplification as, 291
stoichiometric inhibition as, 290
substrate sequestration as, 290–291
zero-order ultrasensitivity as, 286–288

quantification methods for, 283–286
Hill coefficient in, 283–284
MCA, 285–286

UniGene, 70, 73–74
clusters, 71
gene group accession numbers for, 70, 73–74

V
“Vertical point science,” 102
VisualBioMAZE, 501

W
Weiner, Norbert, 3
Wild type phage λ model, 353–354

lytic switching in, 358

X
XML. See EXtensible Markup Language

Y
Y2H. See Yeast two-hybrids
yeast Microarray Global Viewer (yMGV), 153
Yeast two-hybrids (Y2H), 160, 171–179

AD in, 172
alternative, 178–179
benefits/disadvantages of, 172–173
DBD in, 171–172
FPs in, 173

biological, 173
technical, 173

interactome mapping for, 173–175, 179
“many-to-many” mode for, 173
ORFs in, 173

IST in, 174
PPIs and, 160, 171–179
principles of, 171–172
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Yeast two-hybrids (Y2H) (cont.)
reverse, 175–177

dual-bait, 176
interaction-defective allele isolation with, 175
mapping interaction domains through, 175
separate-of-function alleles isolation with, 

175–176
split ubiquitin system in, 178–179

three-hybrid systems and, 177–178
yMGV. See yeast Microarray Global Viewer

Z
Zak, Daniel, 230
Zero-order kinetics, 284
Zero-order ultrasensitivity, 286–288

Goldbeter-Koshland switch in, 287
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